1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
13

A 2.599 g sample of a new organic material is combusted in a bomb calorimeter. The temperature of the calorimeter and its conten

ts increase from 25.25 ∘ C to 29.80 ∘ C. The heat capacity (calorimeter constant) of the calorimeter is 31.71 kJ / ∘ C, what is the heat of combustion per gram of the material?
Engineering
1 answer:
Nat2105 [25]3 years ago
7 0

To solve this problem it is necessary to apply the concepts related to thermal transfer given by the thermodynamic definition of heat as a function of mass, specific heat and temperature change.

Mathematically this is equivalent to

Q = mC_p \Delta T

Where

m = mass

C_p = Specific Heat

\Delta T = Change at temperature

In mass terms (KJ / g) this can be expressed as

\frac{Q}{g} = \frac{C_p \Delta T}{m_{grams}}

Our values are given as

\Delta T = 29.8-25.25 = 4.55\°C

C_p = 31.71kJ/\°C

Replacing,

\frac{Q}{m} = \frac{(31.71kJ/\°C) (4.55\°C)}{2.599g}

\frac{Q}{m} =55.51kJ/g

Therefore the heat of combustion per gram on the material is 55.51KJ/g

You might be interested in
Carnot heat engine A operates between 20ºC and 520ºC. Carnot heat engine B operates between 20ºC and 820ºC. Which Carnot heat en
nikklg [1K]

Answer:

engine B is more efficient.

Explanation:

We know that Carnot cycle is an ideal cycle for all working heat engine.In Carnot cycle there are four processes in which two are constant temperature processes and others two are isentropic process.

We also kn ow that the efficiency of Carnot cycle given as follows  

\eta =1-\dfrac{T_1}{T_2}

Here temperature should be in Kelvin.

For engine A

\eta =1-\dfrac{T_1}{T_2}

\eta =1-\dfrac{273+20}{520+273}

\eta =0.63

For engine B

\eta =1-\dfrac{T_1}{T_2}

\eta =1-\dfrac{273+20}{820+273}

\eta =0.73

So from above we can say that engine B is more efficient.

4 0
3 years ago
After replacing a vacuum booster, the brakes lock up on a road test. Technician A says there is air trapped inside the brake lin
vitfil [10]

Answer:

Technician B

Explanation:

The brakes can lockup due to the following reasons

1) Overheating break systems

2) Use of wrong brake fluid

3) Broken or damaged drum brake backing plates, rotors, or calipers

4) A defective ABS part, or a defective parking mechanism or proportioning valve

5) Brake wheel cylinders, worn off

6) Misaligned power brake booster component

5 0
3 years ago
A cylinder fitted with a frictionless piston contains 2 kg of R-134a at 3.5 bar and 100 C. The cylinder is now cooled so that th
inna [77]

Answer:

The answer to the question is

The heat transferred in the process is -274.645 kJ

Explanation:

To solve the question, we list out the variables thus

R-134a = Tetrafluoroethane

Intitial Temperaturte t₁ = 100 °C

Initial pressure = 3.5 bar = 350 kPa

For closed system we have m₁ = m₂ = m

ΔU = m×(u₂ - u₁) = ₁Q₂ -₁W₂

For constant pressure process we have

Work done = W = \int\limits^a_b P \, dV  = P×ΔV = P × (V₂ - V₁) = P×m×(v₂ - v₁)

From the tables we have

State 1 we have h₁ = (490.48 +489.52)/2 = 490 kJ/kg

State 2 gives h₂ = 206.75 + 0.75 × 194.57= 352.6775 kJ/kg

Therefore Q₁₂ = m×(u₂ - u₁) + W₁₂ = m × (u₂ - u₁) + P×m×(v₂ - v₁)

= m×(h₂ - h₁) = 2.0 kg × (352.6775 kJ/kg - 490 kJ/kg) =-274.645 kJ

5 0
3 years ago
Which of the following would most likely be operated by a sequential control system?
Rudiy27

Answer:pizza oven

Explanation:

7 0
2 years ago
Read 2 more answers
Find the percent change in cutting speed required to give an 80% reduction in tool life when the value of n is 0.12.
vaieri [72.5K]

Answer:21.3%

Explanation:

Given

80 % reduction in tool life

According to Taylor's tool life

VT^n=c

where V is cutting velocity

T=tool life of tool

80 % tool life reduction i.e. New tool Life is 0.2T

Thus

VT^{0.12}=V'\left ( 0.2T\right )^{0.12}

V'=\frac{V}{0.2^{0.12}}

V'=\frac{V}{0.824}=1.213V

Thus a change of 21.3 %(increment) is required to reduce tool life by 80%

6 0
3 years ago
Other questions:
  • function summedValue = SummationWithLoop(userNum) % Summation of all values from 1 to userNum summedValue = 0; i = 1; % Write a
    11·1 answer
  • Which of the following are all desirable properties of a hydraulic fluid? a. good heat transfer capability, low viscosity, high
    5·1 answer
  • Two AAA-size lithium batteries are connected in series in a flashlight. Each battery has 3.5 volt and 4- Amp-hour capacity. If t
    8·1 answer
  • Line layout is also called ......​
    5·1 answer
  • . A 10W light bulb connected to a series of batteries may produce a brighter lightthan a 250W light bulb connected to the same b
    8·2 answers
  • A 2-m3 rigid tank initially contains air at 100 kPa and 22°C. The tank is connected to a supply line through a valve. Air is flo
    14·1 answer
  • the voltage across a 5mH inductor is 5[1-exp(-0.5t)]V. Calculate the current through the inductor and the energy stored in the i
    6·1 answer
  • Request for proposal (RFP) is a type of document that contains the information and proposals mostly through the bidding process.
    14·1 answer
  • IF A CAR AHEAD OF YOU HAS STOPPED AT A CROSSWALK, YOU SHOULD:
    12·1 answer
  • Is santa real or nah is santa real or nah
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!