Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step and very detailed solution of the given problem
Answer:
It will be equivalent to 338.95 N-m
Explanation:
We have to convert 250 lb-ft to N-m
We know that 1 lb = 4.45 N
So foe converting from lb to N we have to multiply with 4.45
So 250 lb = 250×4.45 =125 N
And we know that 1 feet = 0.3048 meter
Now we have to convert 250 lb-ft to N-m
So 
So 250 lb-ft = 338.95 N-m
This is a very very difficult one for me, let me get back to you with the proper answer.
complete question
A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?
Answer:
3.03 V 0.184 W
2.499 mV 125*10^-9 W
Explanation:
First, apply voltage-divider principle to the input circuit: 1
*5
= 4.545 V
The voltage produced by the voltage-controlled source is:
A_voc*V_i = 4.545 V
We can find voltage across the load, again by using voltage-divider principle:
V_o = A_voc*V_i*(R_o/R_l+R_o)
= 4.545*(100/100+50)
= 3.03 V
Now we can determine delivered power:
P_L = V_o^2/R_L
= 0.184 W
Apply voltage-divider principle to the circuit:
V_o = (R_o/R_o+R_s)*V_s
= 50/50+100*10^3*5
= 2.499 mV
Now we can determine delivered power:
P_l = V_o^2/R_l
= 125*10^-9 W
Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.
Answer:
Indicators for ineffective system engineering are as follows
1.Requirement trends
2.System definition change backlog trends
3.interface trends
4.Requirement validation trends
5.Requirement verification trends
6.Work product approval trends
7.Review action closure trends
8.Risk exposure trends
9.Risk handling trends
10.Technology maturity trends
11.Technical measurement trends
12.System engineering skills trends
13.Process compliance trends