Answer:
Rate of internal heat transfer = 23.2 Btu/Ibm
mass flow rate = 21.55 Ibm/s
Explanation:
using given data to obtain values from table F7.1
Enthalpy of water at temperature of 100 F = 68.04Btu/Ibm
Enthalpy of water at temperature of 50 F = 18.05 Btu/Ibm
from table F.3
specific constant of glycerin 
<u>The rate of internal heat transfer ( change in enthalpy ) </u>
h4 - h3 = Cp ( T4 - T3 ) --------------- ( 1 )
where ; T4 = 50 F
T3 = 10 F
Cp = 0.58 Btu/Ibm-R
substitute given values into equation 1
change in enthalpy ( h4 - h3 ) = 23.2 Btu/Ibm
<u>Determine mass flow rate of glycol</u>
attached below is the detailed solution
mass flow rate of glycol = 21.55 Ibm/s
Answer:
exit temperature 285 K
Explanation:
given data
temperature T1 = 270 K
velocity = 180 m/s
exit velocity = 48.4 m/s
solution
we know here diffuser is insulated so here heat energy is negleted
so we write here energy balance equation that is
0 = m (h1-h2) + m ×
.....................1
so it will be
.....................2
put here value by using ideal gas table
and here for temperature 270K
h1 = 270.11 kJ/kg
solve it we get
h2 = 285.14 kJ/kg
so by the ideal gas table we get
T2 = 285 K
The function if I’m not correct just text me but 3
Answer:
Both Technician A and B are correct
Explanation:
Methanol is used in internal combustion engines. However, the use of methanol in internal combustion engines has decreased lately even though it was thought to lead to cleaner emissions than gasoline. Methanol internal combustion engines produce formaldehyde which is also an environmental pollutant. Also, the cost of methanol is slightly higher than that of good quality gasoline.
MTBE replaced tetraethyllead as a gasoline additive because the former lead to the emission of particulate lead from automobile exhausts which is a serious environmental pollutant. The use of MTBE has declined over the years due to environmental concerns. It has been banned because it has been found to be a significant groundwater pollutant if gasoline containing MTBE is spilled or leaked at gas stations.
Answer:
810 g
Explanation:
Mass is the product of density and volume:
m = ρV
m = (8.1 g/cm³)(100 cm³) = 810 g
The mass of the chunk is 810 grams.