Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
 
        
             
        
        
        
We are told that KOH is being used to completely neutral H₂SO₄ according to the following reaction:
KOH + H₂SO₄ → H₂O + KHSO₄
If KOH can completely neutralize H₂SO₄, then there must be an equal amount of moles of each as they are in a 1:1 ratio:
0.025 L x 0.150 mol/L = .00375 mol KOH
0.00375 mol KOH x 1 mole H₂SO₄/1 mole KOH = 0.00375 mol H₂SO₄
We are told we have 15 mL of H₂SO₄ initially, so now we can find the original concentration:
0.00375 mol / 0.015 L = 0.25 mol/L
The concentration of H₂SO₄ being neutralized is 0.25 M.
        
             
        
        
        
Data: 




<span>
Formula: Dilution Calculations
</span>

<span>
Solving:
</span>





<span>
</span>
 
        
             
        
        
        
Answer:
A) in response to an increase in the cytoplasmic Ca2+concentration.
Explanation:
Muscle contraction occurs in response to an increase in the cytoplasmic Ca2 + concentration.
This process occurs with the shortening of the sarcomeres resulting in a result, the actin filaments react with myosin, generating actomyosin. During this reaction, it is necessary to increase the cytoplasmic concentration of Ca + and ATP. In this, myosin will break down ATP, releasing energy so that the muscle can contract.