Answer:
The velocity of the ball is 3.52 m/s.
Explanation:
A projectile is any object that moves under the influence of gravity and momentum only. Examples are; a thrown ball, a fired bullet, a kicked ball, thrown javelin, etc.
Given that the ball was thrown vertically upward on the top of a skyscraper of height 61.9 m. So that the velocity can be determined by;
u = 
Where: u is the velocity of the object, H is the height and g is the gravitational force on the object. Given that: H = 61.9 m and g = 10 m/
, then;
u = 
= 
u = 3.5185
The velocity of the ball is 3.52 m/s.
Answer: 0.24g/ml
Explanation:
Given that:
Volume of water displaced = 23.5 ml
Mass of cork = 5.7 g
Density of the cork = ?
Recall that density is obtained by dividing the mass of a substance by the volume of water displaced.
i.e Density = Mass/volume
Density = 5.7g /23.5ml
Density = 0.24g/ml
Thus, the density of the piece of cork is 0.24g/ml
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find:
Current flow depends on other things in addition to the circuit configuration.
If the SAME voltage is applied to some arrangement of the SAME components, the greatest current will occur when they are all in parallel.