Answer:
<h2>40 kg</h2>
Explanation:
Find the diagram relating to the question for proper explanation of the question below.
Using the principle of moment
Sum of clockwise moments = Sum of anticlockwise moments
Moment = Force * perpendicular distance
For anti-clockwise moment:
Since the 30 kg moves in the anticlockwise direction according to the diagram
ACW moment = 30 * 1 = 30 kgm
For clockwise moment
If another child sits 0.75 m away from the pivot point on the opposite side, moment of the child in clockwise direction = M * 0.75 = 0.75M (M is the mass of the unknown child).
Equating both moments we have;
0.75M = 30
M = 30/0.75
M = 40 kg
The second child's mass is 40 kg
Answer:
Explanation:
From the question we are told that
Electric field of intensity
Rectangle parameter Width Length
Angle to the normal
Generally the equation for Electric flux at parallel to the yz plane is mathematically given by
Generally the equation for Electric flux at parallel to xy plane is mathematically given by
Generally the equation for Electric flux at angle 30 to x plane is mathematically given by
1) In the reference frame of one electron: 0.38c
To find the relative velocity of one electron with respect to the other, we must use the following formula:
where
u is the velocity of one electron
v is the velocity of the second electron
c is the speed of light
In this problem:
u = 0.2c
v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)
Substituting, we find:
2) In the reference frame of the laboratory: -0.2c and +0.2c
In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are
+0.2c
-0.2c
Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
Answer:
128 Kelvin = 128 - 273.15 = -145.15 Celsius. Temperature conversion chart Sample temperature conversions 103.55 Kelvin to degrees Fahrenheit 39.82 degrees Fahrenheit to Kelvin
Explanation:
hope this helps have a good day