The balanced reaction is
Ca + 2H2O → Ca(OH)2 + H2
Here this reaction can be compared with
A + BC ---> AB + C
So here one reactant (A) is accepting a group which is being given by another compound (BC) however the A is not giving any group / element or ion
So this single displacement
Similarly in the given reaction
the anion OH- is only being replaced
The element Ca accepts OH- and H2O loses the same group to form new element H2
So the correct answer is
Single replacement also known as single displacement
- If the abundance of the first isotope is 68.037%, then the abundance of the second isotope is 100%-68.037%.
Substituting into the atomic mass formula,

Answer:
The new force will be \frac{1}{100} of the original force.
Explanation:
In the context of this problem, we're dealing with the law of gravitational attraction. The law states that the gravitational force between two object is directly proportional to the product of their masses and inversely proportional to the square of a distance between them.
That said, let's say that our equation for the initial force is:
![F = G\frac{m_1m_2}{R^2}The problem states that the distance decrease to 1/10 of the original distance, this means:[tex]R_2 = \frac{1}{10}R](https://tex.z-dn.net/?f=F%20%3D%20G%5Cfrac%7Bm_1m_2%7D%7BR%5E2%7D%3C%2Fp%3E%3Cp%3EThe%20problem%20states%20%20that%20%20the%20distance%20decrease%20to%201%2F10%20of%20the%20original%20distance%2C%20this%20means%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DR_2%20%3D%20%5Cfrac%7B1%7D%7B10%7DR)
And the force at this distance would be written in terms of the same equation:

Find the ratio between the final and the initial force:

Substitute the value for the final distance in terms of the initial distance:

Simplify:

This means the new force will be \frac{1}{100} of the original force.
Answer: Ionic Bond
Explanation: The electrostatic attraction that binds oppositely charged ions together. alloy. a mixture composed of two or more elements, at least one of which is a metal.
Hope this helped!