Answer:
x= -2, y = -3
Step-by-step explanation:
1. substitute x = 4+2y in the first equation: 
simplify it : 
2. isolate y in 8 + 5y = -7 --> 5y = -7 - 8 -->
3. solve for y: 5y = -15 --> y = -15/5 --> y= -3
4. solve for x: x = 4 + 2y
x = 4 + 2(-3)
x = 4 + (-6)
x = -2
Answer:
5
Step-by-step explanation:
Assuming we want to evaluate |z|, given that, z=4+3i.
Then, by definition of modulus,



Therefore the modulus be of the given complex number is 5 units
48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
54: 1, 2, 3, 6, 9, 18, 27, 54
gcf: 6
w-(-3)=7
Pretend that there is a -1 in front of the bracket
w-1(-3)=7
Mutiply the bracket by -1
(-1)(-3)=3
w+3=7
Move +3 to the other side. Sign changes from +3 to -3.
w+3-3=7-3
w=4
Answer: w=4
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720