Answer:
Explanation:
In general, an increase in pressure (decrease in volume) favors the net reaction that decreases the total number of moles of gases, and a decrease in pressure (increase in volume) favors the net reaction that increases the total number of moles of gases.
Δn= b - a
Δn= moles of gaseous products - moles of gaseous reactants
Therefore, <u>after the increase in volume</u>:
- If Δn= −1 ⇒ there are more moles of gaseous reactants than gaseous products. The equilibrium will be shifted towards the products, that is, from left to right, and K>Q.
- If Δn= 0 ⇒ there is the same amount of gaseous moles, both in products and reactants. The system is at equilibrium and K=Q.
- Δn= +1 ⇒ there are more moles of gaseous products than gaseous reactants. The equilibrium will be shifted towards the reactants, that is, from right to left, and K<Q.
Solid, Liquid, Gas, and Plasma
Answer:
<em> 14, 508J/K</em>
ΔHrxn =q/n
where q = heat absorbed and n = moles
Explanation:
<em>m = mass of substance (g) = 0.1184g</em>
1 mole of Mg - 24g
<em>n</em> moles - 0.1184g
<em>n = 0.0049 moles.</em>
Also, q = m × c × ΔT
<em> Heat Capacity, C of MgCl2 = 71.09 J/(mol K)</em>
<em>∴ specific heat c of MgCL2 = 71.09/0.0049 (from the formula c = C/n)</em>
<em>= 14, 508 J/K/kg</em>
ΔT= (final - initial) temp = 38.3 - 27.2
= 11.1 °C.
mass of MgCl2 = 95.211 × 0.1184 = 11.27
⇒ q = 11.27g × 11.1 °C × <em>14, 508 j/K/kg </em>
<em>= 1,7117.7472 J °C-1 g-1</em>
<em />
<em>∴ ΔHrxn = q/n</em>
<em>=1,7117.7472 ÷ 0.1184 </em>
<em>= 14, 508J/K</em>
Answer:
I believe it would be D, to enhance the survival rate.
Explanation: