1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
2 years ago
14

Based on the ksp experiment describe a way to soften water by removing calcium ions

Chemistry
1 answer:
NeX [460]2 years ago
7 0

Addition of sodium carbonate is a way to soften water by removing calcium ions

<h3>How calcium ions are removed?</h3>

Water can be softened by the addition of lime to precipitate the calcium as carbonate. Sodium carbonate is also added to remove the remaining calcium salts and to make the water soft.

So we can conclude that addition of lime or sodium carbonate is a way to soften water by removing calcium ions.

Learn more about calcium here: brainly.com/question/26636816

You might be interested in
1. What specifically are you looking for in the IR spectrum to determine if the reaction has given the desired product? 2. What
Umnica [9.8K]

Answer:

You are looking for expected peaks in absorption spectra founded on structure of desired product, respectively on bound in desired compound. Every bond absorb specific energy from radiation which wavelength match to IR spectrum of light. Result of energy absorption is vibration of bond and bonded atoms (if they are not too heavy).That absorbed energy is seen as a peak in absorption spectra. These peaks are specific for each bound so you need to find peaks that mach to bounds in your desired compound and in that matter you can identify your compound.

In nuclear magnetic resonance you are looking for  peaks specific for atoms in your desired compound (H or C atoms). When external magnetic field is applied, atom goes in higher energy state. When atoms goes "relaxing", it releasing energy that mach energy gap from relaxed end excited state. That energy is detected on nuclear magnetic resonance spectra and it depends on neighbor atom so you can determine the position of atoms and identify structure of desired compound.

For better results it is the best to combine these two methods.

Explanation:

7 0
3 years ago
The reaction described by H2(g)+I2(g)⟶2HI(g) has an experimentally determined rate law of rate=k[H2][I2] Some proposed mechanism
MatroZZZ [7]

Answer:

Mechanism A and B are consistent with observed rate law

Mechanism A is consistent with the observation of J. H. Sullivan

Explanation:

In a mechanism of a reaction, the rate is determinated by the slow step of the mechanism.

In the proposed mechanisms:

Mechanism A

(1) H2(g)+I2(g)→2HI(g)(one-step reaction)

Mechanism B

(1) I2(g)⇄2I(g)(fast, equilibrium)

(2) H2(g)+2I(g)→2HI(g) (slow)

Mechanism C

(1) I2(g) ⇄ 2I(g)(fast, equilibrium)

(2) I(g)+H2(g) ⇄ HI(g)+H(g) (slow)

(3) H(g)+I(g)→HI(g) (fast)

The rate laws are:

A: rate = k₁ [H2] [I2]

B: rate = k₂ [H2] [I]²

As:

K-1 [I]² = K1 [I2]:

rate = k' [H2] [I2]

<em>Where K' = K1 * K2</em>

C: rate = k₁ [H2] [I]

As:

K-1 [I]² = K1 [I2]:

rate = k' [H2] [I2]^1/2

Thus, just <em>mechanism A and B are consistent with observed rate law</em>

In the equilibrium of B, you can see the I-I bond is broken in a fast equilibrium (That means the rupture of the bond is not a determinating step in the reaction), but in mechanism A, the fast rupture of I-I bond could increase in a big way the rate of the reaction. Thus, just <em>mechanism A is consistent with the observation of J. H. Sullivan</em>

5 0
3 years ago
..............................................
Vilka [71]
The period is the end of the sentence!!!
6 0
3 years ago
Hello, a little help please guys:( Explain how the series of experiments performed by Crookes, Thomson, Rutherford, and Chadwick
White raven [17]
<span>I did some investigation and summarized the process and made a clearer explanation so those who are confused can imagine the process better :) A scientific theory attempts to explain and describe why things happen. Hypotheses are formed and experiments are done to validate or toss the hypothesis based on the data collected. The Atomic Theory has gone through lots of refining as a scientific theory. For instance, William Crookes conduced an experiment with cathode ray tubes powered by electricity that glowed when powered. Crookes placed an object in between the positive and negative electrode and concluded that the shadow made on the positive side was small particles of matter traveling from the negative side. But more evidence was needed so, later on, J.J. Thomson continued Crookes experiment. He tested what would happen if a negative or positive charged rod was placed along the ray tubes and if it would differ if a different element was used as the negative electrode. Thomson found out that the beam had negatively charged particles and that even if the negative electrode is substituted, the glow is still present, meaning that all elements also had the small negative particles. These particles(now known as electrons) were smaller than the atom and were added to the model of the atom dispersed throughout the neutrally charged atom inside its positive sphere. Now came along Rutherford hoping to support Thomsons model by firing positively charged particles at a thin gold foil thinking it would go straight through the foil, but instead it evenly distributed as they went through the foil, concluding that atoms have a small, dense nucleus(containing positive protons and most of the mass of the atom) that deflected the particles passing through. This was a drastic change in the model now knowing that 1 proton has 2000 times the mass of an electron, but its positive charge cancels the negative electron. After WW1, Chadwick and others were seeing that sometimes the mass of the atom was greater than the mass of the protons and the number of protons was less than the mass of the atom. So it was thought that there were extra electrons and protons adding mass in the nucleus but cancelling their charges, but Rutherford proposed a particle with mass but no charge and called it a neutron; made of paired protons and electrons. But scientists kept studying atoms since there was no evidence of the neutron. Chadwick repeated these experiments though, in hopes to find the neutron and succeeded in 1932, finding it in the nucleus with a close mass to the proton. Thanks to these experiments for refining a scientific theory, we now have a clearer model of the atom.</span>
7 0
3 years ago
A scientist observes how a particular South American bird cares for its young. Why is a field study an appropriate type of scien
mixer [17]
The best answer would be A. Hope i helped
7 0
3 years ago
Other questions:
  • What is 0.00055030 in Scientific form
    14·1 answer
  • What is the empirical formula for a substance that contains 24.59% phosphorus and 75.41% fluorine by mass?
    8·1 answer
  • Places where the seafloor is forced under continental plates.
    14·2 answers
  • Hydrogen gas can be produced by reacting aluminum with sulfuric acid. how many moles of sulfuric acid are needed to completely r
    13·2 answers
  • In animals, nitrogenous wastes are produced mostly from the catabolism of _____. In animals, nitrogenous wastes are produced mos
    11·1 answer
  • Which element has a greater atomic radius Mg or Cl?
    11·1 answer
  • A gas with a pressure of 820.4 mmHg occupies a
    15·1 answer
  • What is a specialised cell?
    11·1 answer
  • Each iron atom has a mass of about 9 × 10–23 grams. Even a small grain of iron has an incredible number of atoms in it—about 1 x
    14·1 answer
  • Air pressure is measured in pascals. For a professional American football game, the ball should be inflated to about 90,000 pasc
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!