1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
4 years ago
5

A certain light truck can go around a flat curve having a radius of 150 m with a maximum speed of 28.0 m/s. With what maximum sp

eed can it go around a curve having a radius of 73.0 m?
Physics
1 answer:
Dima020 [189]4 years ago
5 0

Given Information:  

Radius = r₁ = 150 m

Radius = r₂ = 73 m

Maximum speed = v₁ = 28.0 m/s

Required Information:  

Maximum speed = v₂ = ?

Answer:

Maximum speed v₂ = 19.53 m/s

Explanation:

The maximum acceleration of the truck is

a = v²₁/r₁

a = 28²/150

a = 5.226 m/s²

Now if we change the radius to r₂ = 73 m

Then the maximum speed of the truck is

v₂ = √a*r₂

v₂ = √5.226*73

v₂ = 19.53 m/s

So the speed of the truck is decreased when the radius of curve is decreased.

You might be interested in
The __________ lobe contains the area of the cortex involved in auditory processing called the primary __________ cortex. A. par
Vlada [557]
<span>The temporal lobe contains the area of the cortex involved in auditory processing called the primary auditory cortex.</span><span> 

The temporal </span>lobe<span> is associated with </span>auditory processing<span> and olfaction.
</span>The primary auditory cortex<span> is the </span>part<span> of the temporal </span>lobe which<span> processes </span>auditory <span>information.</span>
8 0
3 years ago
Read 2 more answers
1. explain why mid-sized cars and SUVs have different rollover fatality rates.
iris [78.8K]

Answer:

1.  They generally have poorer fuel efficiency and require more resources to manufacture than smaller vehicles, thus contributing more to climate change and environmental degradation. Their higher center of gravity increases their risk of rollovers.

2. Mid-sized cars and SUVs both have a fixed object fatality rate of 2.6/BVM. This is most likely because they have a similar mass and inertia. The force of the crash is likely to have about the same deceleration in both vehicles.

Explanation:

brainliest please

8 0
3 years ago
What do you mean by Parallel Universe ?​
BartSMP [9]

Answer:

Parallel universe, or alternate reality, is a hypothetical self-contained plane of existence, co-existing with one's own

3 0
3 years ago
Read 2 more answers
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
Pls someone I need it urgently and explain Solving and explanation so I can understand Thank you
Temka [501]

Answer:

   f = 6.37 Hz,       T = 0.157 s

Explanation:

The expression you have is

       y = 5 sin (3x - 40t)

this is the equation of a traveling wave, the general form of the expression is

      y = A sin (kx - wt)

where A is the amplitude of the motion, k the wave vector and w the angular velocity

Angle velocity and frequency are related

         w = 2π f

         f = w / 2π

from the equation w = 40 rad / s

        f = 40 / 2π

        f = 6.37 Hz

frequency and period are related

       f = 1 / T

       T = 1 / f

       T = 1 / 6.37

       T = 0.157 s

4 0
3 years ago
Other questions:
  • [9]
    10·1 answer
  • Suppose the angle of reflection measures 40 degrees. What is the angle of incidence?
    13·2 answers
  • A finite resource in the environment that keeps a population from steadily increasing is known as
    13·1 answer
  • A seesaw made of a plank of mass 10.0 kg and length 3.00 m is balanced on a fulcrum 1.00 m from one end of the plank. A 20.0-kg
    15·2 answers
  • ...
    15·1 answer
  • Please help... <br> !!!!!!!
    10·1 answer
  • Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of ga
    5·1 answer
  • I need helppppppppp!!!!!!
    5·1 answer
  • If a melon has a a mass of 1 kg, how much does the melon weigh?
    14·1 answer
  • A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How long will it take to ge
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!