Answer: Velocity terminal = 0.093m/s
Explanation:
1. We start by evaluating the gap distance between the two cylinders as h = R(sleeve) - R(cylinder)
= (0.0604/2 - 0.06/2)m
= 2×10^-4
Surface are of the cylinder in the drop, which is required in order to evaluate the shearing stress can be expressed as A(cylinder) = π.d.L
= (π×0.06×0.4)m²
= 0.075m²
Since the force of the cylinder's weight is going to balance the shearing force on the walls, we can express the next equation and derive terminal velocity from it.
Shearing stress = u×V.terminal/h = 0.86×V/0.0002
= 4300Vterminal
Therefore, Fw = shearing stress × A
30N = 4300Vterminal × 0.075
V. terminal = 30/4300 m.s
V. terminal = 0.093m/s
Answer:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. Since the force required to lift it is equal to its weight, it follows that the gravitational potential energy is equal to its weight times the height to which it is lifted.
The temperature difference of 1 K is equivalent to the temperature difference of 1 °C. Therefore, we find the relationship between the change in °F and °C.
A change of 212 - 32 °F is the same as a change of 100 - 0 °C. Thus:
(212 - 32) °F = (100 - 0) °C
1 °C = 1.8 °F
1 K = 1.8 °F
Aswer:
False, the values of the distance traveled and the displacement only coincide when the trayectorie is a straight line. Otherwise, the distance will always be greater than the offset.
Although these terms are used synonymously in other cases, they are totally different. Since the distance that a mobile travels is the equivalent of the length of its trajectory. Whereas, the displacement will be a vector magnitude.
<u>xXCherryCakeXx</u>.