A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
5m
Explanation:
Given parameters:
Weight of object = 50N
Work done in lifting object = 250J
Unknown:
Vertical height = ?
Solution:
The work done on an object is the force applied to lift a body in a specific direction.
Work done = force x distance
Weight is a force in the presence of gravity;
Work done = weight x height of lifting
Height of lifting = 
Height of lifting =
= 5m
The vertical height through which the object was lifted is 5m
learn more:
Work done brainly.com/question/9100769
#learnwithBrainly
Answer:
Δu=1300kJ/kg
Explanation:
Energy at the initial state

Is saturated vapor at initial pressure we have

Process 2-3 is a constant volume process

The overall in internal energy
Δu=u₁-u₃
We replace the values in equation
Δu=u₁-u₃

Δu=1300kJ/kg
Answer:
C.) Sled Team C 28 kg moving at 12m/s
I'm pretty sure.