If the solute is properly distributed in the given volume, there are 2.642 g of (NH4)2SO4 per 10 mL. For the new solution, divide the 2.642 g by the molar mass of the compound. The answer is 0.02 moles. Then, divide this by the new volume, 50 mL or 0.05 L. The concentration of the new solution is 0.4 M.
This problem is easily solvable because radioactivity equations are common and well-established. The pseudo-first reaction is written below:
A = A₀(1/2)^(t/h)
where
A is the final amount
A₀ is the original amount
t is the time
h is the half life
5,000 = A₀(1/2)^(24,000/6,000)
Solving for A₀,
<em>A₀ = 80,000 atoms</em>
Answer:
The amount of moles of Fe in 5.22*10²² atoms of Fe is 0.0867.
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 6.023*10²³ atoms are contained in 1 mole, 5.22*10²² atoms are contained in how many moles?

amount of moles= 0.0867
<u><em>The amount of moles of Fe in 5.22*10²² atoms of Fe is 0.0867.</em></u>
Answer: yes
Explanation: its common sense