Answer:
I believe the answer is A: *It is the simplest form of matter" not 100% sure but I think that's correct
Explanation:
Explanation:
the quantity of energy that an isolated, gaseous atom in the ground electronic state must absorb to discharge an electron, resulting in a cation.
Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature
Answer:
Vertically Shrunk by a factor of 1/6
Explanation:
Parent Formula: f(x) = a(bx - c) + d
<em>a</em> - vertical shrink/stretch and x-reflections
<em>b</em> - horizontal shrink/stretch and y-reflections
<em>c</em> - horizontal movement left/right
<em>d</em> - vertical movement up/down
Since we are only modifying <em>a</em>, we are dealing with vertical shrink/stretch:
Since a < 1 (1/6 < 1), we are dealing with a vertical shrink of 1/6.
Since a > 0 (1/6 > 0), we do not have a reflection over the x-axis.