Answer:
if its a multiple question answer its hydroden and carbon
if not its carbon
Answer:
C) Q < K, reaction will make more products
Explanation:
- 1/8 S8(s) + 3 F2(g) ↔ SF6(g)
∴ Kc = 0.425 = [ SF6 ] / [ F2 ]³
∴ Q = [ SF6 ] / [ F2 ]³
∴ [ SF6 ] = 2 mol/L
∴ [ F2 ] = 2 mol/L
⇒ Q = ( 2 ) / ( 2³)
⇒ Q = 0.25
⇒ Q < K, reaction will make more products
Answer:
Aluminium.
Explanation:
The above electronic configuration can be written in a simplified form as shown below:
1s² 2s²2p⁶ 3s²3p¹
Next, we shall determine the number of electrons in the atom of the element as follow:
Number electron = 2 + 2 + 6 + 2 + 1
Number of electron = 13
Next, we shall determine the number of protons.
Since the element is in its neutral state,
The number of electrons and protons are equal i.e
Proton = Electron
Number of electron = 13
Proton = Electron = 13
Proton = 13
Next, we shall determine the atomic number of the element.
The atomic number of an element is simply the number of protons in the atom of the element i.e
Atomic number = proton number
Proton = 13
Atomic number = 13
Comparing the atomic number of the element with those in the periodic table, the element with the above electronic configuration is aluminium since no two elements have the same atomic number.
Answer:
see explanation
Explanation:
To determine limiting reactant divide mole quantities of reactants by the respective coefficient in the balanced equation. The smaller value is the limiting reactant.
P₄ + 5O₂ => 2P₂O₅
12/1 = 12 15/5 = 3
O₂ is the limiting reactant. P₄ will be in excess when rxn stops.