Answer:
1. Newton's first law
2.Newton's second law
3.Newton's third law
Explanation:
1. Newton's first law stated, In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force... this is base of the concept of inertia.
2. Newton's second law stated, In an inertial frame of reference, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma, or in easier words, F is directly proportional to a.
3. Newton's third law stated, When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body., In this case, the Normal Are opposite with gravititional force.
The rate at which velocity changes is called acceleration. (Attensity exists when velocity varies.) If a moving object changes speed.
Why does time accelerate the rate at which velocity changes?
A motion's acceleration is the rate at which it changes from one velocity to another. A velocity's rate of change with respect to time is referred to as its acceleration. The amount and direction of acceleration are both properties of a vector quantity.
A change in velocity is known as what?
A velocity change's acceleration is measured. Acceleration is the measure of how quickly a velocity changes with time. The acceleration measure used in SI is M/s2.
To know more about velocity visit: brainly.com/question/18084516?
#SPJ4
Answer: I'm not sure what it needs to be rounded to, but I got 37.53501401 m/s
Explanation: The formula for speed is speed = distance/time. You plug in the distance (13.40) and the time (0.357), then divide 13.40 by 0.357
I hope this helps! :)
Complete Question
The compete question is shown on the first uploaded question
Answer:
The speed is
Explanation:
From the question we are told that
The distance of separation is d = 4.00 m
The distance of the listener to the center between the speakers is I = 5.00 m
The change in the distance of the speaker is by 
The frequency of both speakers is 
Generally the distance of the listener to the first speaker is mathematically represented as
![L_1 = \sqrt{l^2 + [\frac{d}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%7D)
![L_1 = \sqrt{5^2 + [\frac{4}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%7D)

Generally the distance of the listener to second speaker at its new position is
![L_2 = \sqrt{l^2 + [\frac{d}{2} ]^2 + k}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%20%2B%20k%7D)
![L_2 = \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%20%2B%200.6%7D)
Generally the path difference between the speakers is mathematically represented as

Here
is the wavelength which is mathematically represented as

=> 
=>
=>
Here n is the order of the maxima with value of n = 1 this because we are considering two adjacent waves
=>
=>