To develop this problem it is necessary to apply the concepts related to the Cross Product of two vectors as well as to obtain the angle through the magnitude of the angles.
The vector product between the Force and the radius allows us to obtain the torque, in this way,





Therefore the torque on the particle about the origen is 50k
PART B) To find the angle between two vectors we apply the definition of the dot product based on the vector quantities, that is,





Therefore the angle between the ratio and the force is 103.88°
No, no me habla espanol. yo soy ingles
-- We already know the rate of revolutions per time ...
it's 1 revolution per 0.065 sec. We just have to
unit-convert that to 'per minute'.
(1 rev / 0.065 sec) x (60 sec / min) = (1 x 60) / (0.065) = <em>923 RPM</em> (rounded)
_______________________________
-- 1 revolution = 2π radians
(2π rad) / (0.065 sec) = (2π / 0.065) = <em>96.66 rad/sec</em> (rounded)

Actually Welcome to the Concept of the Kinematics.
1.) Distance travelled = 15+20 = 35 miles.
Ai the total distance covered is 35 miles.
2.) Displacement is the shortest distance from the initial point to the final point.
here it's ==> 20-15 = 5 miles
hence, displacement = 5 miles
A and B are correct statements