As the distance between two charged objects increases, the strength of the electrical force between the objects <em>decreases</em>.
Answer:
8 mph
Explanation:
4 miles in half hour so you add 4 more for the second half
A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance
Here is my work, I find making charts like this one to find knowns and unknowns can be helpful
Answer: ![-\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BBr%5E.%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Explanation:
Rate of a reaction is defined as the rate of change of concentration per unit time.
Thus for reaction:

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
![Rate=-\frac{d[Br^.]}{2dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D)
or ![Rate=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Thus ![-\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Gravitational forces are forces of attraction. It's like the Earth pulling on you and keeping you on the ground.