Freezing Point of Sea water would be lower than that of Pure Water. It is because of salinity of the water
Hope this helps!
The masses can be found by substractions:
- Mass of CaSO₄.H2O (hydrate):
16.05 g - 13.56 g = 2.49 g
15.07 g - 13.56 g = 1.51 g
- The mass of water is equal to the difference between the mass of the hydrate and the mass of the anhydrate:
2.49 g - 1.51 g = 0.98 g
- The percent of water is found by the formula:
massWater ÷ massHydrate * 100%
0.98 g ÷ 2.49 g * 100% = 39.36%
- The mole of water is calculated using water's molecular weight (18g/mol):
0.98 g ÷ 18 g/mol = 0.054 mol water
- A similar procedure is made for the mole of salt (CaSO₄ = 136.14 g/mol)
1.51 g ÷ 136.14 g/mol = 0.011 mol CaSO₄
- The ratio of mole of water to mole of anhydrate is:
0.054 mol water / 0.011 mol CaSO₄ = 0.49
In other words the molecular formula for the hydrate salt is CaSO₄·0.5H₂O
A. SO2Cl2(g) --> SO2(g) + Cl2(g)
<span>1 mole of SOCl2 becomes 1 mole SO2 and 1 mole Cl2 </span>
<span>1 mole --> 2 moles </span>
<span>entropy increases </span>
43 inHg = 43 inHg*2.54cm/in = 109.22cmHg * 10 mm/cm = 1092.2 mmHg
14.7 psi = 760 mmHg
1092.2mmHg * 14.7psi / 760 mmHg = 21.13 psi
Answer: option D. 21.13 psi
The chemical formula : 3HgBr₂(Mercury(II) bromide)
<h3>Further explanation</h3>
Given
The chemical formulas of Mercury and Bromine
Required
The appropriate chemical formula
Solution
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of molecules is determined by the coefficient in front of the compound
the number of atoms is determined by the subscript after the atom and the coefficient
Three molecules⇒ coefficient = 3
one atom of Mercury ⇒Hg
two atoms of Bromine ⇒ Br₂
The chemical formula : 3HgBr₂