Question is incomplete. Complete question is attached below
.............................................................................................................................
Answer: Option A: HCO3-(aq.)
Reason:
From the reaction, it can be seen that following reaction occurs in forward direct
HCO3-(aq) + H2O(l) → H2CO3(aq) + OH-(aq)
In above forward reaction, HCO3- accepts proton from H2O to generate H2CO3. Thus, according to Lowry and Bronsted theory of acid-base,
HCO3- is a base, while
H2CO3 is a conjugate acid.
A saturated is one in which the atoms are linked by single bonds. :)
Answer:
The correct answer is 532 K
Explanation:
The Gay-Lussac law describes the behavior of a gas at constant volume, by changing the pressure or temperature. When is heated, the change in pressure of the gas is directly proportional to it absolute temperature (in Kelvin or K).
We have the following initial conditions:
P1= 71.8 kPa
T1= -104ºC +273 = 169 K
If the pressure increases until reaching 225.9 kPa (P2), we can calculate the final temperature of the gas (T2) by using the Gay-Lussac derived expression:
P1 x T2 = P2 x T1
⇒T2= (P2 x T1)/P1 = (225.9 kPa x 169 K)/71.8 kPa= 531.7 K ≅ 532 K
The answer is C. Elastic potential energy
A reaction is when two or more pure substances combine with each other to form another identity of pure substances. In general from, it is written as:
A + B → C + D
The substances A and B are the reactants, while the substances C and D are the products. Therefore, in a reaction, the products are found at the end or right side of the reaction.