Answer:
a) 3.98 x 10^-10
Explanation:
Hello,
In this case, for the given pH, we can compute the concentration of hydronium by using the following formula:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
Hence, solving for the concentration of hydronium:
![[H^+]=10^{-pH}=10^{-9.40}\\](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-9.40%7D%5C%5C)
![[H^+]=3.98x10^{-10}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.98x10%5E%7B-10%7DM)
Therefore, answer is a) 3.98 x 10^-10
Best regards.
Answer:
The correct answer is B.
Explanation:
The molecule of water has 2 atoms of hydrogen and 1 atom of oxygen.
The ratio of masses are given as:

This illustrates the law of definite proportions which is also known as law of constant compositions .
The law states that 'the elements combining to form compound always combine in a fixed ratio by their mass.'
Whereas :
Law of multiple proportion states that when two elements combine with each other to form more than one compounds , the mass of one element with respect to the fixed mass of another element are in ratio of small whole numbers.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
In a balanced chemical reaction ,total mass on the reactant side must be equal to the total mass on the product side.
Law of conservation of energy states that energy can neither be created nor be destroyed but it can only be transformed from one form to another form.
Answer:
D. 15.8atm
Explanation:
Given parameters:
Initial pressure = 13atm
Initial temperature = 34°C = 34 + 273 = 307K
Final temperature = 100°C = 100 + 273 = 373K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we apply a derivation of the combined gas law taking the volume as a constant.
The expression is shown mathematically below;
=
P and T pressure and temperature values
1 and 2 are initial and final states
Insert the parameters and solve for T₂;
=
P₂ = 15.8atm