Answer:
0.681 atm
Explanation:
To solve this problem, we make use of the General gas equation.
Given:
P1 = 785 torr
V1 = 2L
T1 = 37= 37 + 273.15 = 310.15K
P2 = ?
V2 = 3.24L
T2 = 58 = 58+273.15 = 331.15K
P1V1/T1 = P2V2/T2
Now, making P2 the subject of the formula,
P2 = P1V1T2/T1V2
P2 = [785 * 2 * 331.15]/[310.15 * 3.24]
P2 = 515.715 Torr
We convert this to atm: 1 torr = 0.00132 atm
515.715 Torr = 515.715 * 0.00132 = 0.681 atm
2Ca + O2 = 2CaO
First, determine which is the excess reactant
72.5 g Ca (1 mol) =1.8089725036
(40.078 g)
65 g O2 (1 mol) =2.0313769611
(15.999g × 2)
Since the ratio of to O2 is 2:1 in the balanced reaction, divide Ca's molar mass by 2 to get 0.9044862518. this isn't necessary because Ca is already obviously the limiting reactant. therefore, O2 is the excess reactant.
Now do the stoichiometry
72.5 g Ca (1 mol Ca) (1 mol O2)
(40.078 g Ca)(2 mol Ca)(31.998g O2)
=0.0282669621 g of O2 left over
The individual can consume less than 184.6 g of the snack mix and still be within the FDA limit of salt consumption.
<h3>What is the mass of snack that can be consumed within the limit of sodium intake?</h3>
The mass of the snack mix that the individual can consume and still be within the FDA limit is calculated as follows:
U.S. Food and Drug Administration (FDA) recommends of sodium intake = less than 2.40 g of sodium per day.
Amount of salt in 100 g of snack mix = 1.30 g
Mass of snack that will contain 2.40 g of sodium = 2.40 * 100g/1.30 = 184.6 g of snack mix
Therefore, the individual can consume less than 184.6 of the snack mix and still be within the FDA limit of salt consumption.
In conclusion, the FDA recommends that an individual take in less than 2.40 g of sodium per day from their diet.
Learn more about salts at: brainly.com/question/23463868
#SPJ1
we are asked in this problem to determine the mass of a liquid in a small container. In order to determine the mass, we use an analytical balance for greater accuracy by first weighing the whole system (liquid+beaker). Then transfer the liquid to another container and completely dry the beaker (wash and dry). measure the weight of the beaker. The mass of the liquid is equal to the mass of the system minus the mass of the beaker.