Answer:
The object will have an upward acceleration
Explanation:
Let's consider the forces applied on the box. We have only two forces:
- The applied force of push,
, downward
- The force of gravity,
, (also known as weight of the object), downward
Therefore, the net force on the box is:

Here, we know that force applied is equal or greater than the weight, so

And therefore the net force is greater than zero:
(1)
According to Newton's second law of motion, the net force on the box is equal to the product between its mass and its acceleration:

where
m is the mass of the box
a is its acceleration
Given (1), this means that

Therefore, the box will have an upward acceleration.
In this case force example we have:

So the mass of the box is

So the net force is

And the acceleration is

you can use one of your 5 senses to make _____ during an inquiry activity.
sound
An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
Answer:
L = 8694 Kg.m²/s
Explanation:
r = 270 ĵ m
v = 14 î m/s
m = 2.3 kg
θ = 90º
L = ?
We can apply the equation
L = m*v*r*Sin θ
L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s
We don't know Carter, and we don't know where he is or what
he's doing, so I'm taking a big chance speculating on an answer.
I'm going to say that if Carter is pretty much just standing there,
or, let's say, lying on the ground taking a nap, then the force of
the ground acting on him is precisely exactly equal to his weight.