1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
3 years ago
11

Microwave ovens emit microwave energy with a wavelength of 12.2 cm. What is the energy of exactly one photon of this microwave r

adiation?
Physics
1 answer:
Iteru [2.4K]3 years ago
5 0

Answer:

1.63\cdot 10^{-24} J

Explanation:

The energy of a photon is given by:

E=\frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda is the wavelength of the photon

In this problem, we have a microwave photon with wavelength

\lambda=12.2 cm=0.122 m

Substituting into the equation, we find its energy:

E=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{0.122 m}=1.63\cdot 10^{-24} J

You might be interested in
A lady bug is sitting on the bottom of a can while you twirl it overhead on a string that is 65.0
MA_775_DIABLO [31]

The linear speed of the ladybug is 4.1 m/s

Explanation:

First of all, we need to find the angular speed of the lady bug. This is given by:

\omega=\frac{2\pi}{T}

where

T is the period of revolution

The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:

T = 1 s

Therefore, the angular speed is

\omega=\frac{2\pi}{1 s}=6.28 rad/s

Now we can find the linear speed of the ladybug, which is given by

v=\omega r

where:

\omega=6.28 rad/s is the angular speed

r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation

Substituting, we find

v=(6.28)(0.65)=4.1 m/s

Learn more about angular speed:

brainly.com/question/9575487

brainly.com/question/9329700

brainly.com/question/2506028

#LearnwithBrainly

7 0
3 years ago
A skier is pulled by a towrope up a frictionless ski slope that makes an angle of 12 degrees with the horizontal. The rope moves
MArishka [77]

Answer:

Explanation:

Given,

  • Work done by the rope 900 m/s.
  • Angle of inclination of the slope = \theta\ =\ 12^o
  • Initial speed of the skier = v = 1.0 m/s
  • Length of the inclined surface = d = 8.0 m

part (a)

The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity

\therefore W_r\ =\ W_g\ =\ 900\ J

In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.

part (b)

  • Initial speed of the skier = v = 1.0 m/s.

Rate of the work done by the rope is power of the rope.

Power\ =\ \dfrac{\Delta W}{\Delta t}\\\Rightarrow P\ =\ \dfrac{\Delta W}{\dfrac{d}{v}}\\\Rightarrow P\ =\ \dfrac{\Delta W\times v}{d}\\\Rightarrow P\ =\ \dfrac{900\times 1.0}{8.0}\\\Rightarrow P\ =\ 112.5\ Watt

Part (c)

  • Initial speed of the skier = v = 2.0 m/s.

Rate of the work done by the rope is power of the rope.

Power\ =\ \dfrac{\Delta W}{\Delta t}\\\Rightarrow P\ =\ \dfrac{\Delta W}{\dfrac{d}{v}}\\\Rightarrow P\ =\ \dfrac{\Delta W\times v}{d}\\\Rightarrow P\ =\ \dfrac{900\times 2.0}{8.0}\\\Rightarrow P\ =\ 225\ Watt

4 0
3 years ago
Use the graph below to answer the following question: if average acceleration is calculated using the equation, “ change in velo
sergiy2304 [10]

Answer:

a=9\ cm/s^2

Explanation:

<u>Average Acceleration </u>

Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.

Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that. </em>

When t_2=4\ sec, the graph shows a value of v_2=36\ cm/s

When t_1=0\ sec, the object is at rest, v_1=0

We compute the average acceleration as

\displaystyle a=\frac{v_2-v_1}{t_2-t_1}

\displaystyle a=\frac{36\ cm/s-0\ cm/s}{4\ sec-0\ sec}

\displaystyle a=\frac{36\ cm/s}{4\ s}

\boxed{a=9\ cm/s^2}

6 0
2 years ago
Kepler discovered that planets move faster when they are closer to the sun. Which scientist discovered the reason they move fast
NISA [10]
Pretty sure it was Sir Issac Newton 
7 0
3 years ago
Read 2 more answers
Which of the following is NOT a potential result of climate change?
stepladder [879]

Answer:

My answer :

Explanation:

sea-level change

4 0
3 years ago
Other questions:
  • A 60​-m-long chain hangs vertically from a cylinder attached to a winch. Assume there is no friction in the system and that the
    7·1 answer
  • The drag coefficient of a car at the design conditions of 1 atm, 25°c, and 90 km/h is to be determined experimentally in a large
    15·1 answer
  • Hardness refers to the strength of the forces holding atoms together in a solid mineral. The Mohs scale will tell how easily a m
    8·1 answer
  • If a steel containing 1.88 wt%C is cooled relatively slowly to room temperature, what is the expected weight fraction of pearlit
    5·1 answer
  • Four mass–spring systems oscillate in simple harmonic motion. Rank the periods of oscillation for the mass–spring systems from l
    5·2 answers
  • 17. A 25 kg block is initially at rest on a rough, horizontal surface. A horizontal force of 75 N is required to set
    13·1 answer
  • For this triangle...?
    14·2 answers
  • Describe two possibilities of what will happen to the universe in the future.
    13·1 answer
  • D. If a dog has a mass of 12 kg, what is its weight on Neptune?<br> 11.7N/kg
    9·1 answer
  • The average depth of water in a place near the coast of the Pacific ocean is 5.0 The largest tidal range in that place is 2.0m C
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!