The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.
Answer:
The answer
Explanation:
Thinking together, Better friendship, Makes teacher happy.
Answer:
its 1/2 the mass of the object times by its velocity ^ 2
الملك - الإتاوات - المحاكم - المجلس الملكي - القانون الروماني
Answer:
Explanation:
Based on the wave model of light, physicists predicted that increasing light amplitude would increase the kinetic energy of emitted photoelectrons, while increasing the frequency would increase measured current.
Contrary to the predictions, experiments showed that increasing the light frequency increased the kinetic energy of the photoelectrons, and increasing the light amplitude increased the current.
Based on these findings, Einstein proposed that light behaved like a stream of particles called photons with an energy of \text{E}=h\nuE=hνstart text, E, end text, equals, h, \nu.
The work function, \PhiΦ\Phi, is the minimum amount of energy required to induce photoemission of electrons from a metal surface, and the value of \PhiΦ\Phi depends on the metal.
The energy of the incident photon must be equal to the sum of the metal's work function and the photoelectron kinetic energy: