The object's speed will not change.
In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:

where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
Well, if I understand correctly, I think it'd be 60, because 60+60= 120, but I may be wrong. It's not my best subject, but why not try to help even though I suck lol.
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

2/5 = .4
.4*100= 40%
Alex spends more time
<span>` You can consider T to be in units of seconds/step. Frequency is the inverse of period, so
1/T = frequency and has units of steps per second. There will be 60 times as many steps in a minute.</span>