1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
2 years ago
14

A 60-kg skier is stationary at the top of a hill. She then pushes off and heads down the hill with an initial speed of 4.0 m/s.

Air resistance and the friction between the skis and the snow are both negligible. How fast will she be moving after she is at the bottom of the hill, which is 10 m in elevation lower than the hilltop
Physics
2 answers:
GREYUIT [131]2 years ago
6 0

Answer:

The velocity is  v = 8.85 m/s

Explanation:

From the question we are told that

    The mass of the skier is m_s =  60 \ kg

      The initial speed is u =  4.0 \ m/s

       The height is  h =  10 \ m

According to the law of energy conservation

     PE_t  + KE_t  =  KE_b + PE_b

Where PE_t is the potential energy at the top which is mathematically evaluated as

       PE_t =  mg h

substituting values

       PE_t  =  60 * 4*9.8

      PE_t  =  2352 \ J

And  KE_t is the kinetic energy at the top which equal to zero due to the fact that velocity is zero at the top of the hill

And  KE_b is the kinetic energy at the bottom of the hill which is mathematically represented as

         KE_b  =  0.5 * m * v^2

  substituting  values

         KE_b  =  0.5 * 60 * v^2

=>     KE_b  = 30 v^2

Where v is the velocity at the bottom

   And PE_b is the potential  energy at the bottom which equal to zero due to the fact that height  is zero at the bottom of the hill

So  

        30 v^2 =  2352

=>      v^2 =   \frac{2352}{30}

=>       v =  \sqrt{ \frac{2352}{30}}

        v = 8.85 m/s

         

Romashka [77]2 years ago
5 0

Answer:

The Skier's velocity at the bottom of the hill will be 18m/s

Explanation:

This is simply the case of energy conversion between potential and kinetic energy. Her potential energy at the top of the hill gets converted to the kinetic energy she experiences at the bottom.

That is

mgh = 0.5 mv^{2}

solving for velocity, we will have

v= \sqrt{2gh}

hence her velocity will be

v=\sqrt{2 \times 9.81 \times 10}=14.00m/s

This is the velocity she gains from the slope.

Recall that she already has an initial velocity of 4m/s. It is important to note that since velocities are vector quantities, they can easily be added algebraically. Hence, her velocity at the bottom of the hill is 4 + 14 = 18m/s

The Skier's velocity at the bottom of the hill will be 18m/s

You might be interested in
A worker uses a cart to move a load of bricks weighing 680 N a distance of 10 m across a parking lot.
NNADVOKAT [17]
When you are finding work, the easiest way is to use the formula.

W = F*D

Where F is the force and D is the distance. Simply take the constant force of 209N and multiply it by the distance of 10m. Which will give you 2090J
4 0
3 years ago
Read 2 more answers
An object traveling at a constant speed but with a changing direction is accelerating.
prohojiy [21]

Strange as it may seem, that's true. (choice 'a'.)

"Acceleration" doesn't mean "speeding up".  It means ANY change in
the speed or direction of motion.  So a car with the brakes applied
and slowing down, and a point on the rim of a bicycle wheel that's
turning at a constant rate, are both accelerating.

6 0
2 years ago
Read 2 more answers
An airplane starts from rest at the end of a runway and accelerates at a constant rate. In the first second, the airplane travel
Licemer1 [7]

Answer:

v=4.44\frac{m}{s}

Explanation:

Given that the airplane starts from the rest (this is initial velocity equals to zero)  and accelerates at a constant rate, position can be described like this: x=v_{0}t +\frac{1}{2} at^{2} where x is the position, t is the time a is the acceleration and v_{0} is initial velocity. In this way acceleration can be found. a=\frac{2(x-v_{0}t) }{t^{2} } =\frac{2(1.11m-0)}{1s^{2} } =2.22\frac{m}{s^{2} }.

Now we are able to found velocity at any time with the formula: v=v_{0} +at = 0\frac{m}{s} +(2.22\frac{m}{s^{2}}.2s)=4.44\frac{m}{s}

3 0
3 years ago
What is the main force that must be overcome in order to push an object
My name is Ann [436]

Answer: Friction

Explanation:

Friction and the normal force would be the two initial forces to overcome.

4 0
2 years ago
Two cars are moving towards each other and sound emitted by first car with real frequency of 3000 hertz is detected by a person
sertanlavr [38]

Answer:

 v ’= 21.44 m / s

Explanation:

This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s

           f ’= f (v + v₀) / (v-v_{s})

where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer

in this exercise both the source and the observer are moving, we will assume that both have the same speed,

                v₀ = v_{s} = v ’

we substitute

               f ’= f (v + v’) / (v - v ’)

               f ’/ f (v-v’) = v + v ’

               v (f ’/ f -1) = v’ (1 + f ’/ f)

               v ’= (f’ / f-1) / (1 + f ’/ f) v

               v ’= (f’-f) / (f + f’) v

let's calculate

                v ’= (3400 -3000) / (3000 +3400) 343

                v ’= 400/6400 343

                v ’= 21.44 m / s

3 0
2 years ago
Other questions:
  • The owner of a van installs a rear-window lens that has a focal length of -0.298 m. When the owner looks out through the lens at
    6·1 answer
  • Andy took a bus and then walked from his home to downtown.
    14·1 answer
  • If you found some sandstone in an ancient river bed, which of these conditions at the time that the sandstone was formed would b
    13·1 answer
  • An inductor, battery, resistance, and ammeter and switch are connected in series. If the switch, initially open, is now closed,
    15·1 answer
  • If two negative charges of -2 C and -2 C are put 32,692 m apart from each other how much force will push them apart?
    8·1 answer
  • What is the objects average velocity?
    6·1 answer
  • What is deviation of light by prism​
    13·2 answers
  • a uniform beam of length l and mass mb is supported by two pillars located l/3 from either end, as shown in the figure. a duck o
    15·1 answer
  • How much work was done on a charge of 3.0 to move it through 12v electric potential difference
    15·2 answers
  • Draw suitable diagrams where necessary
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!