1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
2 years ago
11

Note: The rope is 20 m long. Answer like this: (1. 2._____ etc)

Physics
1 answer:
qaws [65]2 years ago
5 0

Answer:

1. <u>Potential energy</u>, 2. <u>Potential and kinetic energy</u>, 3. <u>Potential and kinetic energy</u>, 4. <u>Potential and kinetic energy</u>, 5. <u>Potential energy</u>

Explanation:

We note that the total mechanical energy (M.E.) of the body is given as follows;

M.E. = K.E. + P.E. = Constant

Where;

K.E. = The kinetic energy of the body = (1/2)·m·v²

P.E. = The potential energy of the body = m·g·h

m = The mass of the person

v = The velocity with which the person is in motion

g = The acceleration due to gravity ≈ 9.81 m/s²

h = The height of the person above the ground

The length of the rope = 20 m

The initial height at location 1, h₁ = 40.0 m

At location 1, the velocity, v₁ = 0.00 m/s

The mechanical energy, M.E. = K.E.₁ + P.E.₁

∴  K.E.₁ = 0 and P.E.₁ = m ×9.81×40

M.E. = (1/2) ×m ×0² + m ×9.81×40

∴ M.E. = 0 + P.E.₁ the type of energy present at location 1 is only potential energy

At location 2, the velocity, v₂ = 10.0 m/s

The mechanical energy, M.E. = K.E.₂ + P.E.₂ = (1/2) ×m ×10² + m ×9.81×40

∴  K.E.₂ = 50·m and P.E.₂ = m ×9.81×35 = 343.35·m

M.E. = 50·m + 343.35·m the type of energy at location 2 is both kinetic energy, K.E. and potential energy, P.E.

At location 3, the velocity, v₃ = 20.0 m/s

The mechanical energy, M.E. = K.E.₃ + P.E.₃ = (1/2) ×m ×20² + m ×9.81×20

∴  K.E.₃ = 200·m and P.E.₃ = m ×9.81×20 = 196.2·m

M.E. = 200·m + 196.2·m the type of energy at location 3 is both kinetic energy, K.E. and potential energy, P.E.

At location 4, the velocity, v₄² = 350.0 m²/s², h₄ = 15.0 m

The mechanical energy, M.E. = K.E.₄ + P.E.₄ = (1/2) × m ×350 + m ×9.81×15

∴  K.E.₄ = 175·m and P.E.₄ = m×9.81×15 = 147.15·m

M.E. = 175·m + 147.15·m the type of energy at location 4 is both kinetic energy, K.E. and potential energy, P.E.

At location 5, the velocity, v₅ = 0 m/s, h₅ = 10.0 m

The mechanical energy, M.E. = K.E.₅ + P.E.₅ = (1/2) × m × 0 + m ×9.81×10

∴  K.E.₅ = 0·m and P.E.₅ = m×98.1 = 98.1·m

M.E. = 0·m + 98.1·m the type of energy at location 5 is only potential energy, P.E.

Therefore, we have;

\left|\begin{array}{ccc}Location&&Type(s) \ of \ Energy \ Presents\\1&&Potential \ Energy\\2&&Potential  \ and \ Kinetic \ Energy\\3&&Potential  \ and \ Kinetic \ Energy\\4&&Potential  \ and \ Kinetic \ Energy\\5&&Potential  \  Energy\end{array} \right |

You might be interested in
Imagine a 10kg block moving with a velocity of 20m/s to the left.
lara31 [8.8K]
Kinetic energy , KE= [1/2]m*v^2

m = 10 kg
v=20m/s

KE = [1/][(10kg)(20m/s)^2 = [1/2](10kg)(400m^2/s^2) = 2000 joule

Answer: 2000 joule
3 0
3 years ago
-------------------------------------------------------------------------------
mixas84 [53]

Answer:

nice!!! but did you know that geico can save you 15% or more on car insurance!

Explanation:

8 0
3 years ago
Read 2 more answers
What is the mirror formula for curved mirrors
Reika [66]
The mirror formula for curved mirrors is:
\frac{1}{f}= \frac{1}{d_o}+ \frac{1}{d_i}
where
f is the focal length of the mirror
d_o is the distance of the object from the mirror
d_i is the distance of the image from the mirror

The sign convention that should be used in order to find the correct values is the following:
- f: positive if the mirror is concave, negative if the mirror is convex
- d_i: positive if the image is real (located on the same side of the object), negative if it is virtual (located on the opposite side of the mirror)

3 0
3 years ago
Read 2 more answers
The batteries in the figure above are connected in​
Elena-2011 [213]
The answer is a, series circuit.
5 0
3 years ago
Read 2 more answers
Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed
olasank [31]

Answer:

Average acceleration is (11.05)g\ m/s^2

Explanation:

It is given that,

Initial velocity, u = 0

Final velocity, v = 6.5 km/s = 6500 m/s

Time taken, t = 60 s

Acceleration, a=\dfrac{v-u}{t}

a=\dfrac{v}{t}  

a=\dfrac{6500\ m/s}{60}  

a=108.33\ m/s^2

Since, g=9.8\ m/s^2

So, a=(11.05)g\ m/s^2

So, the angular acceleration of the missile is (11.05)g\ m/s^2. Hence, this is the required solution.

4 0
3 years ago
Other questions:
  • I need help with physics please help me!
    13·1 answer
  • A transformer connected to a 120-V (rms) ac line is to supply 12,500 V (rms) for a neon sign. To reduce shock hazard, a fuse is
    9·1 answer
  • For a moving object, the force acting on the object varies directly with the objects acceleration. When a force of 24N acts on a
    11·1 answer
  • Tarzan, in one tree, sights Jane in another tree. He grabs the end of a vine with length 20 m that makes an angle of 45∘ with th
    15·1 answer
  • Even at such low fractions of the speed of light these stars are moving quite quickly (thousands of kilometers a second) compare
    8·1 answer
  • Consider a loop of wire whose plane is horizontal and that carries a current in the clockwise direction when viewed from above.
    13·1 answer
  • Which of these would be the best definition of energy?
    8·2 answers
  • What can the arrow in a chemical reaction be translated to mean? Check all that apply
    7·2 answers
  • What is the acceleration of a 10 kg block that experiences a 50 N applied force as it slides across a
    12·1 answer
  • Which option is part of designing a set of experimental procedures?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!