We’ve all noticed that science has been accelerating and a very fast rate resulting in what has been called information overload and more recently filter failure. There are now more researchers add more papers than ever which has led to the importance of bibliometric measures Bibliometric as a Field is a fairly new discipline but it has seen in impressive growth in years due to computation and data storage. Journal metrics can play an important role for editors. There are many different metrics
Answer: Graph C is the correct option
Explanation:
The question is incomplete, please remember to submit the whole question :)
However, the rest of the question with its corresponding figures is below:
Assume that positive momentum is to the right, which of the following best represents the momentum of the cart of mass m as a function of time before and after the collision?
The initial momentum
of the cart with mass
(before the collision) is:
(1) Note the negative sign indicates the direction of cart's velocity (to the left, as seen in the first image attached)
On the other hand, the final momentum
of both carts (after the inelastic collision) is:
(2)
So, according to this, the correct graph tha best represents the situation is C. Since before the collision the momentum is negative, then both carts slow down after the collision (
), and taking into account the linear momentum is directly proportional to the velocity
(although is in the positive direction) is less than
.
Take note of the reaction formula which is PCl5=Cl2+PCl3.
The Keq = [Cl2] * [PCl3] / [PCl5]=2.24*10^-2.
For the reason that the volume is 1 liter, the concentration of Cl2 will be computed through: <span>(2.24 * 10^-2) * 0.235 / 0.174 </span> = 0.0303 mol/L is the answer.
As BBC ztrrtv B 4 C w.a)z
Answer:
a) ω = 9.86 rad/s
b) ac = 194. 4 m/s²
c) minimum coefficient of static friction, µs = 19.8
Explanation:
a) angular speed, ω = 2πf, where f is frequency of revolution
1 rps = 6.283 rad/s, π = 3.142
ω = 2 * 3.14 * 0.25 * 6.28
ω = 9.86 rad/s
b) centripetal acceleration, a = rω²
where r is radius in meters; r = 200 cm or 2 m
a = 2 * 9.86²
a = 194. 4 m/s²
c) µs = frictional force/ normal force
frictional force = centripetal force = ma; where a is centripetal acceleration
normal force = mg; where g = 9.8 m/s²
µs = ma/mg = a/g
µs = 194.4 ms⁻²/9.8 ms⁻²
c) minimum coefficient of static friction, µs = 19.8