Answer:
I₁/I₂ = 1000
Thus, the sound of siren is 1000 times louder than the sound of wolf's howl.
Explanation:
First, we need to calculate the intensity of both the sounds. The formula for sound level is given as:
L = 10 log[I/I₀]
where,
L = Sound Level in dB
I = Intensity of sound
I₀ = Reference intensity = 10⁻¹² W/m²
<u>FOR SOUND OF SIREN:</u>
L = 120 dB
I = I₁ = ?
Therefore,
120 = 10 log[I₁/10⁻¹²]
log[I₁/10⁻¹²] = (120)/10
log[I₁/10⁻¹²] = 12
I₁/10⁻¹² = 10¹²
I₁ = (10¹²)(10⁻¹²)
I₁ = 1
<u>FOR SOUND OF WOLF'S HOWL:</u>
L = 90 dB
I = I₂ = ?
Therefore,
90 = 10 log[I₂/10⁻¹²]
log[I₂/10⁻¹²] = (90)/10
log[I₂/10⁻¹²] = 9
I₂/10⁻¹² = 10⁹
I₂ = (10⁹)(10⁻¹²)
I₂ = 10⁻³
Now, we divide the intensities:
I₁/I₂ = 1/10⁻³
I₁/I₂ = 10³
<u>I₁/I₂ = 1000</u>
<u>Thus, the sound of siren is 1000 times louder than the sound of wolf's howl.</u>
Answer:
You have to divide your real measurement to the model. For example, if your real measurement is 5m and your model is 20cm, divide 5/20 =1/4 and that means the ratio would be 1:4.
Explanation:
Kinetic energy =(1/2) (mass) (speed²)
First object: KE = (1/2) (2 kg) (2m/s)² = 4 joules during the lift.
Second object: KE = (1/2) (4kg) (3 m/s)² = 18 joules during the lift.
The second object has more kinetic energy while it's being lifted
than the first object has while it's being lifted. Once they reach their
final heights and stop, neither object has any kinetic energy.
Answer:
atoms atoms atoms atoms atoms
On a Fahrenheit thermometer, the gas becomes 18 degrees warmer.