1). The little projectile is affected by friction all the way through the block.
Friction robs some kinetic energy.
2). The block is affected by friction as it scrapes along the top of the post.
Friction robs some kinetic energy.
3). The block is also affected by friction with the air (air resistance) as it
falls to the ground. Friction robs some kinetic energy.
Answer:
230 m/s northeast, 1.8 m/s up
Explanation:
204 kilometres = 204000 metres
15.0 minutes = 900 seconds
Velocity = Distance / Time
= 204000 / 900
= 230 m/s northeast (to 2 sf.)
1.6km = 1600 metres
Velocity = 1600 / 900
= 1.8 m/s up (to 2 sf.)
Read more on Brainly.com - brainly.com/question/13863590#readmore
With the addition of vectors we can find that the correct answer is:
C) Q> P > R = S > T
The addition of vectors must be done taking into account that they have modulus and direction. The analytical method is one of the easiest methods, the method to do it is:
- Set a Cartesian coordinate system
- Decompose vectors into their components in a Cartesian system
- Perform the algebraic sums on each axis
- Find the resultant vector using the Pythagoras' Theorem to find the modulus and trigonometry to find the direction.
In this exercise indicate that the modulus of all vectors is the same, suppose that the value of the modulus is A.
We fix a Cartesian coordinate system with the horizontal x axis and the vertical y axis, we can see that we do not need to perform any decomposition, so we perform the algebraic sums
Diagram P
x-axis
x = 2A
y-axis
y = 2A
The modulus of the resulting vector can be found with the Pythagorean Theorem
P =
P =
P = 2 √2 A
Diagram Q
x-axis
x = 3A
y-axis
y = A
Resulting
Q =
Q =
Q = 
Diagram R
x- axis
x = 0
y-axis
y = 2 A
Resulting
R =
R =
Diagram S
x-axis
x = 2 A
y-axis
y = 0
Resulting
S = 2A
Diagram T
x- axis
x = 0
y-axis
y = 0
Resultant T = 0
We order the diagram from highest to lowest
Q> P> R = S> T
When reviewing the different answers, the correct one is:
C. Q> P> R = S> T
Learn more about adding vectors here:
brainly.com/question/14748235
Answer:
a) Em= K +U, b) Em= K
Explanation:
The system in this case is formed by the mobilizes and the hill.
Let's write the expressions correctly and completely.
a) When the car moves in the path, the mechanical energy is the siua of the kinetic energy of the car and the potential energy of the car when going up the hill.
Em = K + U
be) when the car moves in the flat part all the mechanical energy is formed by its kinetic energy that is calculated with the mass and speed of the car
Em = K
c) When the car goes up the hill the energy the mechanical energy is conserved, but part of the kinetic energy is transformed into potential energy.