Answer:The most important process would be the ice crystal process
Explanation:
Ice crystal process also called Bergeron process requires numerous small water drops that are supercooled, which is a common feature in clouds between about 0° and -20°C or below, along with a small number of ice crystals. Therefore because the collision-coalescence process requires that cloud droplets be of varying size so that drops will fill at different speeds, the most important process would be the ice crystal process.
Answer:
Yes, yes it would since we need light
Explanation:
Earth's atmosphere blocks many types of light including gamma, x-rays most ultraviolet and infrared. So optical telescopes that use visible light and ultraviolet telescopes that are used to study very hot stars are much less effective on Earth.
Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U
Answer:

Explanation:
Given that,
The mass of the paperclip, m = 1.8 g = 0.0018 kg
We need to find the energy obtained. The relation between mass and energy is given by :

Where
c is the speed of light
So,

So, the energy obtained is
.