Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 
Helium has an atomic mass of 4.00 atomic mass units.
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
So based on your question where there is a block of mass m1= 8.8kg in the inclined plane with an angle of 41 with respect to the horizontal. To find the spring constant of the problem were their is a coefficients of friction of 0.39 and 0.429, you must use the formula K*x^2=m*a*sin(angle). By calculating the minimum spring constant is 220.66 N/m^2