Answer:
18
Explanation:
I'm pretty sure I got it right
According to the law of conservation of momentum:

m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision
Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know.
m1 = 125 kg v1 = 12m/s v'1 = -12.5m/s
m2 = 235kg v2 = -13m/s v'2 = ?




Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation.




The velocity of the 2nd car after the collision is
0.03m/s.
Answer:
The required new pressure is 775 mm hg.
Explanation:
We are given that gas has a volume of 185 ml and a pressure of 310 mm hg. The desired volume is 74.0 ml.
We have to find the required new pressure.
Let the required new pressure be '
'.
As we know that Boyle's law formula states that;

where,
= original pressure of gas in the container = 310 mm hg
= required new pressure
= volume of gas in the container = 185 ml
= desired new volume of the gas = 74 ml
So,
= 775 mm hg
Hence, the required new pressure is 775 mm hg.
Answer:
heterogeneous mixture has components that are not evenly distributed. This means that you can easily distinguish between the different components.
Answer
given,
I is the loudness of sound
I = 10 Log₁₀ r
r is relative intensity
at when relative intensity is 10⁶
I = 60 dB
how much louder when 100 people would be talking together
I = 10 Log₁₀ r
I = 10 Log₁₀ (10⁶ x 100)
I = 10 Log₁₀ (10⁸)
I = 80 dB
hence, the intensity will be increased by (80 dB -60 dB) 20 dB when 100 people start talking together.