1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
7

you are piloting a small plane and you want to reach an airport 450 km due south in 3.0 h a wind is blowing from the west 50.0 k

m/h what heading and airspeed should you choose to reach your destination in time
Physics
1 answer:
alex41 [277]3 years ago
8 0

Answer:

You should choose airspeed 158.11 km/h at 18.4° west of south

Explanation:

The distance to the air port is 450 km due to south

You should to reach the airport in 3 hours

→ Velocity = distance ÷ time

→ Distance = 450 km , time = 3 hours

→ The velocity of your plane = 450 ÷ 3 = 150 km/h due to south

A wind is blowing from west 50 km/h

We need to know what heading and airspeed you should choose to

reach your destination

At first we must find the resultant velocity of your plane and the wind

The south and west are perpendicular, then the resultant velocity is

→ v_{R}=\sqrt{(v_{p})^{2}+(v_{w})^{2}}

→ v_{p}=150 km/h ,  v_{w}=50 km/h

→ v_{R}=\sqrt{(150)^{2}+(50)^{2}}=158.11 km/h

To cancel the velocity of the wind, the pilot should maintain the velocity

of the plane at 158.11 km/h

The direction of the velocity is the angle between the resultant velocity

and the vertical (south)

→ The direction of the velocity is tan^{-1}\frac{50}{150}=18.4°

The direction of the velocity is 18.4° west of south

<em>You should choose airspeed 158.11 km/h at 18.4° west of south</em>

You might be interested in
An electromagnetic wave of wavelength
Ivanshal [37]

Answer:

4.01\cdot 10^{-7} m

Explanation:

When an electromagnetic wave passes through the interface between two mediums, it undergoes refraction, which means that it bents and its speed and its wavelength change.

In particular, the wavelength of an electromagnetic wave in a certain medium is related to the index of refraction of the medium by:

\lambda=\frac{\lambda_0}{n}

where

\lambda_0 is the wavelength in a vacuum (air is a good approximation of vacuum)

n is the refractive index of the medium

In this problem:

\lambda_0 = 5.89\cdot 10^{-7} m is the original wavelength of the wave

n = 1.47 is the index of refraction of corn oil

Therefore, the wavelength of the electromagnetic wave in corn oil is:

\lambda=\frac{5.89\cdot 10^{-7}}{1.47}=4.01\cdot 10^{-7} m

8 0
3 years ago
The diagram below shows a 5.00-kilogram block
bixtya [17]

The name and strength of the force holding the block up is 50 N upward - Normal force.

The given parameters:

  • <em>Mass of the block, m = 5 kg</em>

The weight of the block acting downwards due to gravity is calculated as follows;

W = mg

where;

  • <em>g is acceleration due to gravity = 10 m/s²</em>

W = 5 x 10

W = 50 N <em>(</em><em>downwards</em><em>)</em>

Since the block is at rest, an a force equal to the weight of the block must be acting upwards. This force is known as normal reaction.

Fₙ = 50 N <em>(</em><em>upwards</em><em>)</em>

Thus, the name and strength of the force holding the block up is 50 N upward - Normal force.

Learn more about Normal force here: brainly.com/question/14486416

4 0
2 years ago
Read 2 more answers
A baseball player hits a homerun, and the ball lands in the left field seats, which is 103m away from the point at which the bal
Sati [7]

(a) The ball has a final velocity vector

\mathbf v_f=v_{x,f}\,\mathbf i+v_{y,f}\,\mathbf j

with horizontal and vertical components, respectively,

v_{x,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\cos(-38^\circ)\approx16.2\dfrac{\rm m}{\rm s}

v_{y,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\sin(-38^\circ)\approx-12.6\dfrac{\rm m}{\rm s}

The horizontal component of the ball's velocity is constant throughout its trajectory, so v_{x,i}=v_{x,f}, and the horizontal distance <em>x</em> that it covers after time <em>t</em> is

x=v_{x,i}t=v_{x,f}t

It lands 103 m away from where it's hit, so we can determine the time it it spends in the air:

103\,\mathrm m=\left(16.2\dfrac{\rm m}{\rm s}\right)t\implies t\approx6.38\,\mathrm s

The vertical component of the ball's velocity at time <em>t</em> is

v_{y,f}=v_{y,i}-gt

where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve for the vertical component of the initial velocity:

-12.6\dfrac{\rm m}{\rm s}=v_{y,i}-\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)\implies v_{y,i}\approx49.9\dfrac{\rm m}{\rm s}

So, the initial velocity vector is

\mathbf v_i=v_{x,i}\,\mathbf i+v_{y,i}\,\mathbf j=\left(16.2\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(49.9\dfrac{\rm m}{\rm s}\right)\,\mathbf j

which carries an initial speed of

\|\mathbf v_i\|=\sqrt{{v_{x,i}}^2+{v_{y,i}}^2}\approx\boxed{52.4\dfrac{\rm m}{\rm s}}

and direction <em>θ</em> such that

\tan\theta=\dfrac{v_{y,i}}{v_{x,i}}\implies\theta\approx\boxed{72.0^\circ}

(b) I assume you're supposed to find the height of the ball when it lands in the seats. The ball's height <em>y</em> at time <em>t</em> is

y=v_{y,i}t-\dfrac12gt^2

so that when it lands in the seats at <em>t</em> ≈ 6.38 s, it has a height of

y=\left(49.9\dfrac{\rm m}{\rm s}\right)(6.38\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)^2\approx\boxed{119\,\mathrm m}

6 0
3 years ago
Average velocity is different than average speed because calculating average velocity involves
borishaifa [10]

Answer:

average velocity include total displacement whereas average speed include total distance

6 0
3 years ago
13. in batesian mimicry, a palatable species gains protection by mimicking an unpalatable one. imagine that individuals of a pal
fiasKO [112]

Batesian mimicry is an adaptive feature associated with the coloration of a given species in a given environment.

<h3>What is Batesian mimicry?</h3>

Batesian mimicry can be defined as a type of adaptive feature associated with the coloration of a particular species and/or population.

On the first island, the color of the population won't change because of the absence of predators.

On the second island, the color of the population will change because of the presence of predators that can be alerted by the color.

On the third island, the color of the population won't change because of the presence of a species with a similar color.

In conclusion, Batesian mimicry is an adaptive feature associated with the coloration of a given species in a given environment.

Learn more about Batesian mimicry here:

brainly.com/question/14139071

#SPJ1

6 0
2 years ago
Other questions:
  • Large-scale environmental catastrophes _______.
    13·1 answer
  • An astronaut on an alien planet drops a rock into a crater which is 100 meters deep. The rock hits the bottom of the crater 4 se
    8·1 answer
  • Reread the introduction section of this activity. Write a brief conclusion for this activity
    9·2 answers
  • Think of a time where you have observed someone's behavior and been encouraged to do the same. What did you do? Was it a good or
    7·1 answer
  • Listening to your favorite radio station involves which area of physics?
    15·1 answer
  • If two stars in the sky are separated by twice the angle projected by your index and pinky fingers, then how many degrees are th
    8·1 answer
  • If you could repeat the lab and make it better, what would you do differently and why? There are always ways that labs can be im
    9·2 answers
  • In a position vs. time graph depicting the motion of two different objects, the point at which the lines intersect is where the
    6·1 answer
  • A ray in benzene has a critical angle of 41.8 deg when trying to enter air. What is the index of refraction for benzene?
    12·1 answer
  • LPG is a better domestic fuel than wood?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!