The dissolving power of water is very important for life on Earth. Wherever water goes, it carries dissolved chemicals, minerals, and nutrients that are used to support living things. Because of their polarity, water molecules are strongly attracted to one another, which gives water a high surface tension
Answer:
11.4
Explanation:
Step 1: Given data
- Concentration of the base (Cb): 0.300 M
- Basic dissociation constant (Kb): 1.8 × 10⁻⁵
Step 2: Write the dissociation equation
NH₃(aq) + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq)
Step 3: Calculate the concentration of OH⁻
We will use the following expression.
![[OH^{-} ]=\sqrt{Kb \times Cb } = \sqrt{1.8 \times 10^{-5} \times 0.300 } = 2.3 \times 10^{-3} M](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%20%5D%3D%5Csqrt%7BKb%20%5Ctimes%20Cb%20%7D%20%3D%20%5Csqrt%7B1.8%20%20%5Ctimes%2010%5E%7B-5%7D%20%5Ctimes%200.300%20%7D%20%3D%202.3%20%5Ctimes%2010%5E%7B-3%7D%20M)
Step 4: Calculate the pOH
We will use the following expression.
![pOH =-log[OH^{-} ]= -log(2.3 \times 10^{-3} M) = 2.6](https://tex.z-dn.net/?f=pOH%20%3D-log%5BOH%5E%7B-%7D%20%5D%3D%20-log%282.3%20%5Ctimes%2010%5E%7B-3%7D%20M%29%20%3D%202.6)
Step 5: Calculate the pH
We will use the following expression.

In all atoms, the number of protons and the number of electrons is always the same. The number of neutrons is very roughly the same as the number of protons, but sometimes it's rather more. The number of protons in an atom is called the atomic number and it tells you what type of atom you have.
Molarity
Molarity is a unit used to express the concentration of a substance, and it is defined as the number of moles of solute per decimeter cubed (liter) of solvent.
Given:
1.50 L
62.5 grams
and the MM of MgO: 40.31 g/mol
Molarity: mol/L
First, find mol.
62.5 g x 1mole ÷ 40.31 g = 1.55 mol
then divide mol and the given liters
1.55mol ÷ 1.50 L= 1.03 M