Answer: This is true
Explanation: v2=800/25= 32m/s
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is being acted upon by an external force. This law is also called the law of inertia because it depends on mass.
<em>From the given question, we can </em><em>fill gaps </em><em>as follows;</em>
Objects want to continue doing what they’re doing because they are “lazy.” This is called law of inertia.
Learn more about Newton's first law of motion here: brainly.com/question/10454047
Explanation:
Exothermic reaction is defined as the reaction in which release of heat takes place. This also means that in an exothermic reaction, bond energies of reactants is less than the bond energies of products.
Hence, difference between the energies between the reactants and products releases as heat and therefore, enthalpy of the system will decrease.
Whereas in an endothermic reaction, heat is supplied from outside and absorbed by the reactant molecules. Hence, enthalpy of the system increases.
As water acts as a coolent and when fuel rods in a nuclear reactor are immersed in it then heat created by coolent is absorbed by water and then it changes into steam.
Since, absorption of heat occurs in the nuclear reactor. Therefore, it is an endothermic reaction.
Thus, we can conclude that nuclear reactors use fuel rods to heat water and generate steam. This process is endothermic.
Answer:

Explanation:
For n-=1 state hydrogen energy level is split into three componets in the presence of external magnetic field. The energies are,
,
,

Here, E is the energy in the absence of electric field.
And
are the highest and the lowest energies.
The difference of these energies

is known as Bohr's magneton.
B=2.5 T,
Therefore,

Now,

Therefore, the energy difference between highest and lowest energy levels in presence of magnetic field is 
Answer:
A
Explanation:
Actual output divided by the effective capacity. It is the ratio of output to effectiveness