295k=22°c
1050k=777°
total heat needed=
(0.475)(777-22)(specific heat capacity of aluminium)+(0.475)(specific latent heat of aluminium)
Answer : (b) The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The general reaction is:

The general rate law expression for the reaction is:
![\text{Rate}=k[A]^a[B]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BA%5D%5Ea%5BB%5D%5Eb)
where,
a = order with respect to A
b = order with respect to B
R = rate law
k = rate constant
and
= concentration of A and B reactant
Now we have to determine the rate law for the given reaction.
The balanced equations will be:

In this reaction,
and
are the reactants.
The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D%5E1)
or,
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
Answer:
The Ka is 9.11 *10^-8
Explanation:
<u>Step 1: </u>Data given
Moles of HX = 0.365
Volume of the solution = 835.0 mL = 0.835 L
pH of the solution = 3.70
<u>Step 2:</u> Calculate molarity of HX
Molarity HX = moles HX / volume solution
Molarity HX = 0.365 mol / 0.835 L
Molarity HX = 0.437 M
<u />
<u>Step 3:</u> ICE-chart
[H+] = [H3O+] = 10^-3.70 = 1.995 *10^-4
Initial concentration of HX = 0.437 M
Initial concentration of X- and H3O+ = 0M
Since the mole ratio is 1:1; there will react x M
The concentration at the equilibrium is:
[HX] = (0.437 - x)M
[X-] = x M
[H3O+] = 1.995*10^-4 M
Since 0+x = 1.995*10^-4 ⇒ x=1.995*10^-4
[HX] = 0.437 - 1.995*10^-4 ≈ 0.437 M
[X-] = x = 1.995*10^-4 M
<u>Step 4: </u>Calculate Ka
Ka = [X-]*[H3O+] / [HX]
Ka = ((1.995*10^-4)²)/ 0.437
Ka = 9.11 *10^-8
The Ka is 9.11 *10^-8