Filtration can be used to separate an insoluble solid from a liquid, or a precipitate from the reaction mixture in which it formed. The solid which collects in the filter paper<span> is called the residue. The clear liquid which passes through the </span>filter paper<span> is called the filtrate.</span>
Answer:
SeCl₆ < SeF₂ < SeO₂
Explanation:
(A) SeO₂
The central atom has 2 bond pairs and 1 lone pair. The molecule is bent shaped which has an angle of 120°.
(B) SeCl₆
The central atom has 6 bond pairs and 0 lone pair. The geometry is octahedral in which the equatorial bonds has an angle of 90° and axial bond has an angle of 90°.
(C) SeF₂
The central atom has 2 bond pairs and 2 lone pairs. The geometry is bent shape which has an angle of approximately 105.5°.
The order is:
<u>SeCl₆ < SeF₂ < SeO₂</u>
Materials<span> and their </span>properties<span>: </span>compounds like<span> sodium chloride - an interactive educational resource for 11 to 14 year olds. ... Elements are substances (</span>like<span> hydrogen and oxygen) that can't be split into simpler substances. ... For </span>each<span> statement, decide whether it describes a mixture or a </span>compound<span> and check the box.</span>
Answer: Out of the given options bonds connecting atoms in reactants break, and bonds connecting atoms in products form are the changes which takes place when a chemical change occurs.
Explanation:
A change that leads to the change in chemical composition of a substance is called a chemical change.
For example, 
Here, bond between the reactant atoms nitrogen and hydrogen is broken down.
On the other hand, bond connecting the products that is
and
is formed.
Thus,, we can conclude that out of the given options bonds connecting atoms in reactants break, and bonds connecting atoms in products form are the changes which takes place when a chemical change occurs.
There are 158.4 grams of CO2 in 3.6 mol of CO2.
<h3>HOW TO CALCULATE MASS?</h3>
The mass of a substance can be calculated by multiplying the number of moles of the substance by its molar mass. That is;
mass of CO2 = no. of moles × molar mass
According to this question, there are 3.6 moles of CO2.
mass of CO2 = 3.6 moles × 44g/mol
mass of CO2 = 158.4g.
Therefore, there are 158.4 grams of CO2 in 3.6 mol of CO2
Learn more about mass at: brainly.com/question/15959704