1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
11

A 59 kg physics student is riding her 220 kg Harley at 12 m/s when she has a head-on collision with a 2.1 kg pigeon flying the o

pposite direction at 44m/s. The bird is still on the motorcycle after the collision. How fast is the motorcycle going after the collision?
Physics
1 answer:
IgorLugansk [536]3 years ago
6 0

Answer:

Explanation:

Using conservation of momentum

m_1=59+220=279kg

m_2=2.1kg

U_1=12m/s

U_2=-44m/s

m_1U_1+m_2U_2=(m_1+m_2)V\\\\\frac{278\times 12-2.1\times 44}{279+2.1}=V\\\\V=11.58m/s

You might be interested in
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
Tomtit [17]

Answer:

(a) 185 N/m

(b) 3.083 kg

Explanation:

(a)

Using,

E = 1/2ke²....................... Equation 1

Where E = work done to compress the spring, k = spring constant of the spring, e = compression of the spring.

make k the subject of the equation

k = 2E/e²............... Equation 2

Given: E = 3.7 J, e = 0.20 m

Substitute into equation 2

k = 2(3.7)/0.2²

k = 185 N/m.

(b)

Using,

F = ma.............. Equation 2

Where F = force applied to the spring, m = mass attached to the spring, a = acceleration of the spring.

But from hook's law,

F = ke................. Equation 3

substitute equation 3 into equation 2

ke = ma

make m the subject of the equation

m = ke/a................ Equation 4

Given: k = 185 N/m, e = 0.2 m, a = 12 m/s²

Substitute into equation 4

m = 185(0.2)/12

m = 3.083 kg

3 0
3 years ago
Read 2 more answers
A piece of aluminum foil has a known surface density of
bija089 [108]

The cube has 6 equal, square, foil faces. The mass of foil for each face is (380/6) milligrams.

The surface area of each piece is (380)/(6•11) cm^2.

The length of each side of the piece is √(380/6•11) cm

That's about 2.4 cm .

It's a cute little foil cube, just under 1-inch each way.


5 0
3 years ago
Your starship, the Aimless Wanderer,lands on the mysterious planet Mongo. As chief scientist-engineer,you make the following mea
melisa1 [442]

Answer:

m = 1.26*10²⁵ kg.

Explanation:

Assuming that the mass of the stone is much smaller than the mass of the planet, we can get the mass, applying the Universal Law of  Gravitation to both masses, as follows:

Fg = G* ms* mp / rp²

Now, if we apply Newton's 2nd Law to the mass of the stone, we can get the gravitational acceleration, as follows:

Fg = ms*a = ms*g ⇒ g = G*mp / rp²

First of all, we need to get the value of g.

Assuming that this acceleration is constant, we can appy the kinematic equations to this situation.

We know that the stone is thrown upward with an initial velocity vo = 15 m/s.

At the highest point in the trajectory, just before of changing direction, the stone comes momentarily to a stop.

At this point, applying the definition of acceleration, we can write:

vf = vo -g*t ⇒ 0 = vo -gt ⇒ g = vo/t (1)

We have the total time since the stone was thrown upwards, not the one used for the upward trajectory.

It can be showed, using the expression for the displacement (which is the same in both directions) that the time used for going up, it's the same used to go down, so the time that we need to put in (1). is just the half of the total time.

So, replacing in (1) we get the value of g, as follows:

g = 15 m/s / 4.5 s = 3.33 m/s²

Now, we can replace this value in the equation that gives us g based in the Universal Law of Gravitation, as follows:

g=G*mp / rp² (2)

Before solving for mp, however, we need to get the value of the radius of the planet.

Assuming that it's a perfect sphere, we can get this value from the value of the circumference at the planet's equator:

rp = 2*π*rp / 2*π ⇒ rp = 1.0*10⁵ km / 2*π = 15,915 km.

With this value for  rp, we can solve (2) for mp, as follows:

mp= g*rp² / G = 3.33 m/s² * (15,915 km)² / 6,67*10⁻¹¹ N.m²/kg²

mp = 1.26*10²⁵ kg.

8 0
3 years ago
A seagull flying horizontally over the ocean at a constant speed of 2.60 m/s carries a small fish in its mouth. It accidentally
Ivenika [448]

(a) +2.60 m/s

The motion of the fish dropped by the seagul is a projectile motion, which consists of two independent motions:

- a horizontal uniform motion, at constant speed

- a vertical motion, at constant acceleration (acceleration of gravity, g=-9.8 m/s^2, downward)

In this part we are only interested in the horizontal motion. As we said the horizontal component of the fish's velocity does not change, therefore its value when the fish reaches the ocean is equal to its initial value, which is the speed at which the seagull was flying (because it was flying horizontally):

v_x = +2.60 m/s

(b) -17.2 m/s

The vertical component of the fish's velocity instead follows the equation:

v_y = u_y +gt

where

u_y = 0 is the initial vertical velocity, which is zero

g=-9.8 m/s^2 is the acceleration of gravity

t is the time

Since the fish reaches the ocean at t = 1.75 s, we can substitute this time into the formula to find the final vertical velocity:

v_y = 0+(-9.8)(1.75)=-17.2 m/s

where the negative sign indicates the direction (downward).

(c)

The horizontal component of the fish's velocity would increase

The vertical component of the fish's velocity would stay the same.

As we said from part (a) and (b):

- The horizontal component of the fish's velocity is constant during the motion and it is equal to the initial velocity of the seagull -> so if the seagull's initial speed increases, the horizontal velocity of the fish will increase too

- The vertical component of the fish's velocity does not depend on the original speed of the seagull, therefore it is not affected.

4 0
3 years ago
Different kinds of lenses are used in eyeglasses to help people with eye conditions. Farsightedness is an eye condition in which
andriy [413]

Answer:

tyy

Explanation:

5 0
3 years ago
Other questions:
  • A box slides with uniform acceleration up an incline. The box has an initial speed of 9.0 m/s and rises vertically 2.60 m before
    10·1 answer
  • Alejandra weighs 225 newtons. how much work does she do against gravity when she climbs to a ledge at the top of a 15 meter clim
    9·1 answer
  • Current events and overexposure of sun
    9·1 answer
  • Which of these cultures did NOT make major contributions to astronomy?
    13·1 answer
  • It is desired to lay off certain horizontal distances for building layouts. The length of the tapes are not 100.00 ft. Determine
    14·1 answer
  • What does the slope of a Position vs. Time graph represent?
    14·1 answer
  • A test specimen in a tensile test has a gage length of 2.0 in and an area = 0.5in^2. During the test the specimen yields under a
    13·1 answer
  • What is the mass of a baseball that has a kinetic energy of 105 J and is traveling at 10 m/s?​
    6·1 answer
  • The owner of a van installs a rear-window lens that has a focal length of -0.304 m. When the owner looks out through the lens at
    7·1 answer
  • A picture that shows magnets that will repel
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!