1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
6

A record of travel along a straight path is as follows: 1. Start from rest with constant acceleration of 2.65 m/s2 for 17.0 s. 2

. Maintain a constant velocity for the next 1.60 min. 3. Apply a constant negative acceleration of −9.39 m/s2 for 4.80 s.
(a) What was the total displacement for the trip?

b) What were the average speeds for legs 1, 2, and 3 of the trip, as well as for the complete trip
Physics
1 answer:
nlexa [21]3 years ago
8 0
Hello

Let's solve the problem in the three different steps

1) Uniformly accelerated motion, with acceleration a_1 = 2.65~m/s^2 and for a total time of t_1=17~s. The body is initially at rest, so the distance covered is given by
S= \frac{1}{2}a_1t_1^2=382.9~m
Calling v_f and v_i the final and initial velocity, and since the v_i=0~m/s because the body starts from rest, we can use
a= \frac{v_f-v_i}{t}
to find the final velocity after this first leg:
v_{f}=v_i+a_1t_1=45~m/s
And the average velocity in this first leg is
v_1= \frac{v_f+v_i}{2}=22.5~m/s

2) Uniform motion. The velocity is constant and it is equal to the final velocity of the first leg: v_2=45~m/s. This is also the average velocity of the second leg. 
The total time of this second leg is t_2=1.60~min = 96~s. The distance covered is given by
S_2=v_2t_2=45~m/s \cdot 96~s=4320~m

3) Uniformly decelerated motion, with constant deceleration of a_3=-9.39~m/s^2 and for a total time of t_3=4.8~s. Here, the initial velocity of the body is the final velocity of the previous leg, i.e. v_i=45~m/s. Therefore, the distance covered in this leg is given by
S_3=v_i t_3 + \frac{1}{2} a_3 t^2 =107.8~m
The final velocity in this leg is given by
v_f=v_i+at=45~m/s-9.39~m/s^2 \cdot 4.8~s = -0.07~m/s
The negative sign means that after decelerating, the body has started to go in the opposite direction. Similarly to step 1, the average velocity in this leg is given by
v_3 =  \frac{1}{2}(v_f+v_i)=  \frac{1}{2}(-0.07~m/s+45~m/s)=  22.5~m/s

4) Finally, the total distance covered in the motion is
S=S_1+S_2+S_3=382.9~m+4320~m+107.8~m=4810.7~m
To find the average velocity, we must "weigh" the average velocity of each leg for the correspondent time of that leg:
v_{ave}= \frac{v_1t_1+v_2t_2+v_3t_3}{t_1+t_2+t_3}=40.8~m/s
You might be interested in
Roughly how many stars are in the Milky Way Galaxy?
svetlana [45]

Answer:

there are many stars in the milky way galaky

Explanation:

uncountable stars

7 0
3 years ago
Read 2 more answers
A ball is kicked at a speed of 16m/s at 33° and it eventually returns to ground level further down field.
saw5 [17]

Hi there!

We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).

Remember to break the velocity into its vertical and horizontal components.

Thus:

0 = vi - at

0 = 16sin(33°) - 9.8(t)

9.8t = 16sin(33°)

t = .889 sec

Find the max height by plugging this time into the equation:

Δd = vit + 1/2at²

Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²

Solve:

Δd = 7.747 - 3.873 = 3.8744 m

4 0
3 years ago
Read 2 more answers
Zeros are never significant digits true or false
liraira [26]
This affirmative is false
7 0
3 years ago
Read 2 more answers
A pulley system has an efficiency of 74.2%. If you perform 200 J of work, how
Fudgin [204]

Answer:

C

Explanation:

If a pulley system has an efficiency of 74.2%, then only that fraction of the work performed will be useful. 74.2%=0.742. 0.742*200 is about 148J. Hope this helps!

8 0
3 years ago
The nonreflective coating on a camera lens with an index of refraction of 1.29 is designed to minimize the reflection of 634-nm
eimsori [14]

Answer:

minimum thickness of the coating = 122.868 nm

Explanation:

Given data

lens index of refraction = 1.29

wavelength = 634 nm

glass index of refraction = 1.53

to find out

minimum thickness of the coating

solution

we have given non reflective coating

so

we know that minimum thickness of the coating formula

minimum thickness of the coating = Wavelength / 4n

here n is coating index of refraction

so put here both value to get thickness

minimum thickness of the coating = Wavelength / 4n

minimum thickness of the coating = 634 / 4 ( 1.29 )

so minimum thickness of the coating = 122.868 nm

5 0
3 years ago
Other questions:
  • A searchlight is 210 ft from a straight wall. As the beam moves along the​ wall, the angle between the beam and the perpendicula
    7·1 answer
  • A room has dimensions 3.00 m (height) 3.70 m 4.30 m. A fly starting at one corner flies around, ending up at the diagonally oppo
    13·1 answer
  • 5. Lady Gaga needed someone to buy more meat for her meat dress. The famous
    12·1 answer
  • To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 900 loops o
    5·1 answer
  • Convert an acceleration of 1km/h^2 into cm/8^2?
    8·1 answer
  • a mango fruit drop down from top of its tree which is 5m high. How long does it take to reach the ground​
    14·2 answers
  • Which proportion can you use to find the value of a? (posted in this category because of bots)
    10·1 answer
  • A plane starting at rest at one end of a runway undergoes a uniform acceleration of 4.8 m/s
    15·1 answer
  • Which of the following are examples of negative brain plasticity? (Note: You will
    9·1 answer
  • A 7.8-kg solid sphere, made of metal whose density is 2500 kg/m3, is suspended by a cord. When the sphere is immersed in water (
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!