1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana [24]
3 years ago
6

A record of travel along a straight path is as follows: 1. Start from rest with constant acceleration of 2.65 m/s2 for 17.0 s. 2

. Maintain a constant velocity for the next 1.60 min. 3. Apply a constant negative acceleration of −9.39 m/s2 for 4.80 s.
(a) What was the total displacement for the trip?

b) What were the average speeds for legs 1, 2, and 3 of the trip, as well as for the complete trip
Physics
1 answer:
nlexa [21]3 years ago
8 0
Hello

Let's solve the problem in the three different steps

1) Uniformly accelerated motion, with acceleration a_1 = 2.65~m/s^2 and for a total time of t_1=17~s. The body is initially at rest, so the distance covered is given by
S= \frac{1}{2}a_1t_1^2=382.9~m
Calling v_f and v_i the final and initial velocity, and since the v_i=0~m/s because the body starts from rest, we can use
a= \frac{v_f-v_i}{t}
to find the final velocity after this first leg:
v_{f}=v_i+a_1t_1=45~m/s
And the average velocity in this first leg is
v_1= \frac{v_f+v_i}{2}=22.5~m/s

2) Uniform motion. The velocity is constant and it is equal to the final velocity of the first leg: v_2=45~m/s. This is also the average velocity of the second leg. 
The total time of this second leg is t_2=1.60~min = 96~s. The distance covered is given by
S_2=v_2t_2=45~m/s \cdot 96~s=4320~m

3) Uniformly decelerated motion, with constant deceleration of a_3=-9.39~m/s^2 and for a total time of t_3=4.8~s. Here, the initial velocity of the body is the final velocity of the previous leg, i.e. v_i=45~m/s. Therefore, the distance covered in this leg is given by
S_3=v_i t_3 + \frac{1}{2} a_3 t^2 =107.8~m
The final velocity in this leg is given by
v_f=v_i+at=45~m/s-9.39~m/s^2 \cdot 4.8~s = -0.07~m/s
The negative sign means that after decelerating, the body has started to go in the opposite direction. Similarly to step 1, the average velocity in this leg is given by
v_3 =  \frac{1}{2}(v_f+v_i)=  \frac{1}{2}(-0.07~m/s+45~m/s)=  22.5~m/s

4) Finally, the total distance covered in the motion is
S=S_1+S_2+S_3=382.9~m+4320~m+107.8~m=4810.7~m
To find the average velocity, we must "weigh" the average velocity of each leg for the correspondent time of that leg:
v_{ave}= \frac{v_1t_1+v_2t_2+v_3t_3}{t_1+t_2+t_3}=40.8~m/s
You might be interested in
A tube 1.20 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.350 m long and has a mass o
Ksju [112]

Answer:

71.4583 Hz

67.9064 N

Explanation:

L = Length of tube = 1.2 m

l = Length of wire = 0.35 m

m = Mass of wire = 9.5 g

v = Speed of sound in air = 343 m/s

The fundamental frequency of the tube (closed at one end) is given by

f=\frac{v}{4L}\\\Rightarrow f=\frac{343}{4\times 1.2}\\\Rightarrow f=71.4583\ Hz

The fundamental frequency of the wire and tube is equal so he fundamental frequency of the wire is 71.4583 Hz

The linear density of the wire is

\mu=\frac{m}{l}\\\Rightarrow \mu=\frac{9.5\times 10^{-3}}{0.35}\\\Rightarrow \mu=0.02714\ kg/m

The fundamental frequency of the wire is given by

f=\frac{1}{2l}\sqrt{\frac{T}{\mu}}\\\Rightarrow f^2=\frac{1}{4l^2}\frac{T}{\mu}\\\Rightarrow T=f^2\mu 4l^2\\\Rightarrow T=71.4583^2\times 0.02714\times 4\times 0.35^2\\\Rightarrow T=67.9064\ N

The tension in the wire is 67.9064 N

7 0
3 years ago
) A 73-mH solenoid inductor is wound on a form that is 0.80 m long and 0.10 m in diameter. A coil having a resistance of is tigh
Aleonysh [2.5K]

Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil

Answer:

6.169 μA

Explanation:

Formula for induced EMF is given by the equation;

EMF = M(di/dt). We are given;

di/dt = 2.5 A/s

M = 19μH = 19 × 10^(-6) H

Thus;

EMF = 19 × 10^(-6) × 2.5.

EMF = 47.5 × 10^(-6) V

Formula for current is;

i = EMF/R. R is resistance given as 7.7 ohms.

Thus; i = 47.5 × 10^(-6)/7.7

i = 6.169 μA

5 0
3 years ago
Which of the following items conducts thermal energy best?
kompoz [17]
Its b i belive

because it the only thing i saw on the list that conduts

                                      
                
   
6 0
3 years ago
Read 2 more answers
Does the charge that flows into the capacitor during the charging go all the way through the capacitor and back to the battery,
snow_lady [41]
The capacitor is used to store electric charge.That is what makes capacitors special. <span>
The charge that flows into the capacitor is stored on the plate of the capacitor that the source voltage is connected to. </span>When current flows into a capacitor, the charges get “stuck” on the plates because they can’t get past the insulating dielectric. One plate is positively charged and the other negatively <span>The stationary charges on these plates create an </span>electric field. <span>When charges group together on a capacitor like this, the cap is storing electric energy just as a battery might store chemical energy.</span>
8 0
4 years ago
Is it possible for an object with a constant speed to accelerating?
FromTheMoon [43]
Yes. A roulette ball circulating in a spinning wheel, a car going around a curved
road at 30 mph, and a planet in a circular orbit are all being accelerated.

"Acceleration" does NOT mean "speeding up".  It means any change in the
speed or DIRECTION of motion.
8 0
3 years ago
Read 2 more answers
Other questions:
  • A skateboarder, starting from rest, rolls down a 12.8-m ramp. When she arrives at the bottom of the ramp her speed is 8.89 m/s.
    12·1 answer
  • An object with a mass of 20 kg has a net force of 80 n acting on it. what is the acceleration of the object?
    11·1 answer
  • In the amusement park ride known as Magic Mountain Superman, powerful magnets accelerate a car and its riders from rest to 43.4
    8·1 answer
  • Using a good pair of binoculars, you observe a section of the sky where there are stars of many different apparent brightnesses.
    12·1 answer
  • Please help me with homework
    13·1 answer
  • A star rotates in a circular orbit about the center of its galaxy. The radius of the orbit is 6.9 x 1020 m, and the angular spee
    12·1 answer
  • What are the names of the ions?
    15·1 answer
  • A man wishes to travel due north in order to cross a river 5 kilometers wide flowing due East at 3 kilometers per hour . if he c
    9·1 answer
  • A billiard ball of mass m hits another one of the same mass. The first ball moves off at 30 degrees. For an elastic collision wh
    5·1 answer
  • In which direction does Earth’s gravitational force act?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!