Answer:
If there was no air resistance
Explanation:
We know that free fall is a unique motion in which gravity only works on one object. Objects that are said to be free-falling do not experience a significant force of air resistance; They come under the sole effect of gravity. Under such conditions, all objects fall under the same acceleration, regardless of their mass.
Answer:
t = 7,8 s
Explanation:
From the instant, the rabbit passes the cat. The cat star running acceleration of 0,5 m/s² .
When the cat arrives at the speed of 3,9 m/s the cat catches the rabbit
Then for the cat arrives at 3,9 m/s nedds
v = vo + a*t vo = 0 then v = a*t
3,9 ( m/s) = 0,5 ( m/s² ) * t
t = 7,8 s
v = 3,9 m/s =
Divide distance by the time it takes to travel that distance
the formula for time is divide distance/speed
Polarized light light is unique in that it vibrates mostly in one direction.
Polarized mild waves are light waves in which the vibrations occur in a single plane. The process of reworking unpolarized light into polarized light is called polarization. There are a ramification of methods of polarizing mild.
Polarization is used for differentiating among transverse and longitudinal waves. Infrared spectroscopy makes use of polarization. it is used in seismology to take a look at earthquakes. In Chemistry, the chirality of organic compounds is tested the use of polarization strategies.
Refraction is the change in route of waves that takes place when waves tour from one medium to every other. . Light has a dual nature. as it has waves, sunlight passing via rainstorm makes a rainbow. however, while mild moves a sun mobile, it can provide strength as a series of very small bursts. particles of count number have names together with the proton, electron and neutron.
Learn more about lights here:-brainly.com/question/19697218
#SPJ4
Answer:
y = 2.74 m
Explanation:
The linear thermal expansion processes are described by the expression
ΔL = α L ΔT
Where α the thermal dilation constant for concrete is 12 10⁻⁶ºC⁻¹, ΔL is the length variation and ΔT the temperature variation in this case 20ªc
If the bridge is 250 m long and is covered by two sections each of them must be L = 125 m, let's calculate the variation in length
ΔL = 12 10⁻⁶ 125 20
ΔL = 3.0 10⁻² m
Let's use trigonometry to find the height
The hypotenuse Lf = 125 + 0.03 = 125.03 m
Adjacent leg L₀ = 125 m
cos θ = L₀ / Lf
θ = cos⁻¹ (L₀ / Lf)
θ = cos⁻¹ (125 / 125.03)
θ = 1,255º
We calculate the height
tan 1,255 = y / x
y = x tan 1,255
y = 125 tan 1,255
y = 2.74 m