Answer:

Explanation:
The gravitational force between two corpses is given by the following equation:

Where F is the force, G is the gravitational constant
(
), M and m are the masses of the corpses and d is the distance between them.
So we have that:


Answer:
Electric potential energy at the negative terminal: 
Explanation:
When a particle with charge
travels across a potential difference
, then its change in electric potential energy is

In this problem, we know that:
The particle is an electron, so its charge is

We also know that the positive terminal is at potential

While the negative terminal is at potential

Therefore, the potential difference (final minus initial) is

So, the change in potential energy of the electron is

This means that the electron when it is at the negative terminal has
of energy more than when it is at the positive terminal.
Since the potential at the positive terminal is 0, this means that the electric potential energy of the electron at the negative end is

the answer is a) 0.00235 because 1/425=0.00235. hope I helped!
Speed can never be negative because it does not depend in which direction the car moves whereas, velocity will change if a car turns from due North to East.
Quantities which can be described only by their magnitudes are called scalars and those which are described by both, magnitude and direction are vectors
The primary colors of light are red, blue and green.
There are the pigments like yellow, magenta and cyan that are the mixture of two primary colors.
For example, magenta is a mixture of red and blue color. Thus, it reflects the red and blue color. Also, magneta absorbs the green color.
These type of colors that reflects two primary colors and absorb one color are known as secondary pigments.
Hence, 2nd option is the correct answer.