Answer:
The electric potential will be "259.695 volt".
Explanation:
In the given question, the figure is not provided. Below is the attached figure given.
Given:





Now,
At point P, the electric potential will be:
⇒ 
By putting values, we get
⇒ ![=9\times 10^9 [\frac{6.39\times 10^{-9}}{0.40} +\frac{3.22\times 10^{-9}}{0.25} ]](https://tex.z-dn.net/?f=%3D9%5Ctimes%2010%5E9%20%5B%5Cfrac%7B6.39%5Ctimes%2010%5E%7B-9%7D%7D%7B0.40%7D%20%2B%5Cfrac%7B3.22%5Ctimes%2010%5E%7B-9%7D%7D%7B0.25%7D%20%5D)
⇒ 
Answer:
Because it has more mass
Explanation:
To understand this, think about the equation of kinetic energy
KE =
m 
Kinetic energy depends on both the velocity (v) as well as the mass (m).
Because a lorry is bigger and heavier than a car, it will have more mass. With more mass, at the same velocity the lorry with have more kinetic energy.
Answer:
We define voltage as the amount of potential energy between two points on a circuit. One point has more charge than another. This difference in charge between the two points is called voltage.
Answer:
The answer to your question is : 521.8 m
Explanation:
Data:
Different heights
Time first object (tfo) = 10.7 s
Time second object (tso)= 14.8 s
Initial speed of both objects(vo) = 0 m/s
a = 9.81 m/s²
Formula:
h = vot + 1/2 (a)(t)² but vo = 0 so, h = 1/2 (a)(t)²
Then, height fo h = 1/2 (9.81)(10.7)² = 561.6 m
height so h = 1/2(9,81)(14.8)² = 1074.4 m
Difference in their heights = 1074.4 m - 561.6 m = 521.8 m
Answer:
<em>The difference in pressure between the external air pressure, and the internal air pressure of the middle ear.</em>
Explanation:
First of all, we should note that pressure decreases with height and increases with depth. The air within the middle ear (between the ear drum and the Eustachian tube) adjusts itself to respond to the atmospheric pressure, or when we yawn. At a high altitude like on the hill, the air pressure in the middle ear, is fairly low (this is to balance the low air pressure at this height). While riding down the hill quickly, there is little time for the air pressure in the ear to readjust itself to the increasing external air pressure, causing the external air to push into the ear drum. Along the way, the air within the middle ear is adjusted by the opening of the Eustachian tube, allowing more air into the space in the middle ear to balance the external air pressure. This readjustment causes the ear to pop.