Answer:

Explanation:
From the law of conservation of energy
Energy lost by the spring, W=Kinetic energy gained, KE+Potential energy gained, PE+Work done by friction, Fr



The required distance from A to B is 
Can you please translate to English?
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Answer:
Compression Test
Explanation:
The Specimen is undergoing a compression test. It is similar to tensile test with the difference that the force is compressive and applied along the direction of stress. Both Tensile and compression tests are performed on Universal Testing machine. Compression test is done to determine the product's reaction when it is compressed, squashed and crushed.
Answer:
129.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 346 m / sec
wavelength ( λ ) = 2.69 m
We have to calculate Frequency ( f ) :
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 346 / 2.69 Hz
= > f = 34600 / 269 Hz
= > f = 129.74 Hz
Hence, frequency of sound is 129.74 Hz.