An element refers to a collection of atoms having the same number of protons and electrons (an atomic number). In each element there is a different atomic number due to a different amount of protons in the nucleus.
An isotope is a variation of an element that contains a different number of neutrons, therefore adding weight to the atom.
An ion is a charged atom, and its charge shows how many electrons it needs to gain or lose in order to become stable.
British realized their northern strategy had failed
To solve this problem it is necessary to apply the concewptos related to Torque, kinetic movement and Newton's second Law.
By definition Newton's second law is described as
F= ma
Where,
m= mass
a = Acceleration
Part A) According to the information (and as can be seen in the attached graph) a sum of forces is carried out in mass B, it is obtained that,


In the case of mass A,


Making summation of Torques in the Pulley we have to



Replacing the values previously found,





Replacing with our values


PART B) Ignoring the moment of inertia the acceleration would be given by



Therefore the error would be,



Answer:
Extrasolar solar system differ from our solar system in many ways such as of mass, size and shape of the planet, as well as temperature or amount of heat received in each planet.
Explanation:
An extrasolar planet is a planet outside the Solar System, while the Solar System orbit around the sun as a result of the gravitational pull of the sun.
Thus, we can say that the major difference between extrasolar planetary systems and solar system is that in solar system, planets orbit around the Sun, while in extrasolar planetary systems, planets orbit around other stars.
All of the planets in our solar system orbit around the Sun. Planets that orbit around other stars are called exoplanets or extrasolar.
Extrasolar solar system differ from our solar system in many ways such as of mass, size and shape of the planet. They also differ in terms of temperature, because the temperature in each planet in solar system depends on its distance from the sun while that of the extrasolar depends on the activities of the star.
Answer:
The angular velocity is: (2π radians) ⁄ (4.3 sec) = 1.461 rad/sec
The angular displacement is: (1.461 rad/sec)(1 sec) = 1.461 radians
Explanation: