Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.
Answer:
they were in two places in flint and Birmingham and in Birmingham it is hot but flint of cold the Simi is they both have Sunday school for Joetta
Explanation:
use in your own words teachers know when your not trust me.
Answer:
(a)0.531m/s
(b)0.00169
Explanation:
We are given that
Mass of bullet, m=4.67 g=
1 kg =1000 g
Speed of bullet, v=357m/s
Mass of block 1,
Mass of block 2,
Velocity of block 1,
(a)
Let velocity of the second block after the bullet imbeds itself=v2
Using conservation of momentum
Initial momentum=Final momentum







Hence, the velocity of the second block after the bullet imbeds itself=0.531m/s
(b)Initial kinetic energy before collision



Final kinetic energy after collision



Now, he ratio of the total kinetic energy after the collision to that before the collision
=
=0.00169
Answer:
1.58 Hz
Explanation:
The frequency of the simple pendulum is given by
f = 1/T
= 1/2π√g/l
In this problem, I = 10.0 cm = 0.1 m
f = 1/2π√9.8/0.1
= 1.58 Hz