Answer : The correct option is, (D) 100 times the original content.
Explanation :
As we are given the pH of the solution change. Now we have to calculate the ratio of the hydronium ion concentration at pH = 5 and pH = 3
As we know that,
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
The hydronium ion concentration at pH = 5.
![5=-\log [H_3O^+]](https://tex.z-dn.net/?f=5%3D-%5Clog%20%5BH_3O%5E%2B%5D)
..............(1)
The hydronium ion concentration at pH = 3.
![3=-\log [H_3O^+]](https://tex.z-dn.net/?f=3%3D-%5Clog%20%5BH_3O%5E%2B%5D)
................(2)
By dividing the equation 1 and 2 we get the ratio of the hydronium ion concentration.
![\frac{[H_3O^+]_{original}}{[H_3O^+]_{final}}=\frac{1\times 10^{-5}}{1\times 10^{-3}}=\frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_3O%5E%2B%5D_%7Boriginal%7D%7D%7B%5BH_3O%5E%2B%5D_%7Bfinal%7D%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-5%7D%7D%7B1%5Ctimes%2010%5E%7B-3%7D%7D%3D%5Cfrac%7B1%7D%7B100%7D)
![100\times [H_3O^+]_{original}=[H_3O^+]_{final}](https://tex.z-dn.net/?f=100%5Ctimes%20%5BH_3O%5E%2B%5D_%7Boriginal%7D%3D%5BH_3O%5E%2B%5D_%7Bfinal%7D)
From this we conclude that when the pH of a solution changes from a pH of 5 to a pH of 3, the hydronium ion concentration is 100 times the original content.
Hence, the correct option is, (D) 100 times the original content.
There are a total of four quantum numbers that govern the
electrons. These are the principal quantum number (n), the angular quantum
number (l), the magnetic quantum number (ml) and lastly the spin quantum number
(ms). Each electron has a unit set of the four quantum numbers.
Since the first 3 quantum numbers is already specified, so
the remaining to be filled is the ms quantum number which can only have values
of +1/2 and -1/2. So we have 2 electrons.
Answer:
<span>2 electrons</span>
D. It is the heat required to change a gram of substance from a liquid to a gas.
Explanation:
The heat of vaporization is the heat required to change a gram of substance from a liquid to a gas.
- It is also known as the enthalpy of vaporization.
- The heat of vaporization is the quantity of heat needed to change one gram of a substance from liquid to gas.
- This heat of vaporization is dependent on the pressure conditions the process is taking place.
- Different liquids have their heat of vaporization.
learn more:
Heat of vaporization brainly.com/question/9529654
#learnwithBrainly
Has a negative charge and emits energy when it moves to a lower energy orbit from an excited state.
electrons are NOT found in the nucleus but are actually found in rings surrounding the nucleus called orbits.
And while protons and neutrons have reltively the same mass, electrons are about 2000 times lighter.
Also: side note, when electrons move FROM a lower energy orbit INTO an excited state, it absorbs light.
In order to understand this question and to answer it correctly, there are some definitions/terms that need to be acknowledged.
Firstly, TEMPERATURE is defined as the average KINETIC ENERGY of a sample. So, in the question when the reference is made to the speed of the molecules, it can be translated to temperature. Thus, since the speed of the molecules decreases, then it can be said that the Temperature of the system decreases.
Secondly, according to Gay-Lussac Law, Pressure is directly proportional to Temperature when the volume is constant. As such, an increase in Pressure sees an increase in Temperature.
Based on what is known above, the statement "<span>In a rigid container, when the speed of the gas molecules decreases, the pressure of the gas also decreases" is a true one.
Thus the answer is TRUE.</span>