Answer:
3.72 mol Hg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Density = Mass over Volume
Explanation:
<u>Step 1: Define</u>
D = 13.6 g/mL
54.8 mL Hg
<u>Step 2: Identify Conversions</u>
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Find</u>
13.6 g/mL = x g / 54.8 mL
x = 745.28 g Hg
<u>Step 4: Convert</u>
<u />
= 3.71544 mol Hg
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.71544 mol Hg ≈ 3.72 mol Hg
Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J
Br2 experiences dipole-dipole interactions. ICl experiences dipole-dipole interactions. Br2 forms hydrogen bonds. ICl experiences induced dipole-induced dipole interactions.
Answer is: pH of barium hydroxide is 13.935.
Chemical dissociation of barium hydroxide in water:
Ba(OH)₂(aq) → Ba²⁺(aq) + 2OH⁻(aq).
c(Ba(OH)₂) = 0.43 M.
V(Ba(OH)₂) = 100 mL ÷ 1000 mL/L = 0.1 L.
n(Ba(OH)₂) = 0.43 mol/L · 0.1 L.
n(Ba(OH)₂) = 0.043 mol.
From chemical reaction: n(Ba(OH)₂) : n(OH⁻) = 1 : 2.
n(OH⁻) = 0.086 mol.
c(OH⁻) = 0.86 mol/L.
pOH = -logc(OH⁻).
pOH = 0.065.
pH = 14 - 0.065 = 13.935.
what is interfacial tension in liqui liquid extraction?