Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Answer:
Angular frequency will increase
No change in the amplitude
Explanation:
At extreme end of the SHM the energy of the SHM is given by

here we know that

now at the extreme end when one of the mass is removed from it
then in that case the angular frequency will change

So angular frequency will increase
but the position of extreme end will not change as it is given here that the top block is removed without disturbing the lower block
so here no change in the amplitude
I think the correct answer is C
The car has a 12 mile head start, going 80 mph, so his distance is:dcar=80∗t+12
The is going at 108 mph, so his distance is:dcop=108t
Setting them equal to each other we get:80t+12=108t⇒12=28t⇒t=1228=37
So 3/7 of an hour.about 25.7 mins.
Answer:
The germline (the gametes)
Explanation:
Mutations are permanent changes in the DNA sequence. They can occur randomly, from mistakes during DNA replication, or as the result of external factors like UV radiation.
For these mutations to be passed on to the next generation, they must be present in the DNA of the gametes(i.e. the egg and sperm cells). This is because this is the DNA that goes on to make the offspring in the next generation following fertilisation.
If mutations are present in somatic cells (i.e. cells other than the gametes), they are not passed on to the next generation. For example, if someone gets mutations in their skin cells as a result of exposure to UV rays, this will not be passed on to their children.