Kinetic energy is the energy possessed by an object on motion. it is expressed as follows:
KE = 0.5mv^2
where m is the mass and v is the velocity of the object. We calculate as follows:
KE = 0.5mv^2
1.1x10^9 J = 0.5(8.0x10^4 kg) v^2
v = 165.83 m/s
Answer:
A tsunami with a record run-up height of 1720 feet occurred in Lituya Bay, Alaska. On the night of July 9, 1958, an earthquake along the Fairweather Fault in the Alaska Panhandle loosened about 40 million cubic yards (30.6 million cubic meters) of rock high above the northeastern shore of Lituya Bay.
Explanation:
To solve this problem, we use the formula
λ = s sin θ
where s is the separation and θ is the angle interference
So,
λ = 20 x 10^-6 sin 2.5
λ = 8.72 x 10^-7 m
The required angle for the fourth order bright fringe is
θb = sin⁻¹ (4λ / s) = sin⁻¹ (4 (8.72 x 10^-7 m)/ 20 x 10^-6 ) = 10.04°
The required angle for the fourth order dark fringe is
θd = sin⁻¹ (4.5 λ / s) = sin⁻¹ (4.5 (8.72 x 10^-7 m)/ 20 x 10^-6 ) = 11.31°
Answer:
See below
Explanation:
Energy is lost in the form of friction/heat/sound
you cannot get more work out of a machine than you put into it.
"increments of 8" means the major divisions are 0,8,16,24 ?
<span>x axis, calculate the moment arms from 0 </span>
<span>3x4, 2x12, 1x20 </span>
<span>from an arbitrary C </span>
<span>3(c-4) + 2(c-12) + (c-20) = 0 </span>
<span>3c - 12 + 2c -24 + c - 20 = 0 </span>
<span>6c = 56 </span>
<span>c = 9.33 </span>
<span>y axis </span>
<span>3x3, 1x12, 2x20 </span>
<span>3(c-4) + 1(c-12) +2 (c-20) = 0 </span>
<span>3c - 12 + c - 12 + 2c - 40 = 0 </span>
<span>6c = 64 </span>
<span>c = 10.67 </span>
<span>so center is x = 9.33, y = 10.67 </span>