A rotation motion is a motion that takes place around a fixed axis.
Like gears turning on each other.
Vector ' W ' best and there ya go
Answer:
<u>FALSE.</u>
Explanation:
Newton's third law states that :
- <em>Every action has equal and opposite reaction</em>
- <em>That is , the magnitude is the same but the directions are opposite</em>
- <em>The action reaction forces DONOT operate on the same body.</em>
For example ,
If a block is kept on the ground , the action force is the normal force acting on it due to the ground. <em>BUT , NOTE THAT : the reaction force isn't the gravitational force on the body ! It is the normal force acting on the ground due to the block !</em>
Thus,
we conclude that action and reaction forces donot act on the same body and therefore , this case has the <u>answer : FALSE </u>
Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
Both believe that an atom contains negative charges and positive charges.
But both were different in the placement of charges