Pacemaker........................................................
Answer:
given,
mass of copper = 100 g
latent heat of liquid (He) = 2700 J/l
a) change in energy
Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (300 - 4)
Q = 11153.63 J
He required
Q = m L
11153.63 = m × 2700
m = 4.13 kg
b) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (78 - 4)
Q = 2788.41 J
He required
Q = m L
2788.41 = m × 2700
m = 1.033 kg
c) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (20 - 4)
Q = 602.90 J
He required
Q = m L
602.9 = m × 2700
m =0.23 kg
06758 m
Explanation:
it is correct because that is what
Answer:
Explanation:
For image formation in objective lens
object distance u = 14 +1 = 15 mm
focal length f = 14 mm .
image distance v = ?
lens formula

Putting the values

v = 210 mm .
B )
magnification = v / u
= 210 / 15
= 14
size of image = 14 x 1.1 mm
= 15.4 mm
= 15 mm approx
C )
For final image to be at infinity , image produced by objective lens must fall at the focal point of eye piece . so objective lens's distance from the image formed by objective must be equal to focal length of eye piece that is 21 mm .
21 mm is the answer .
D )
overall magnification =

D = 25 cm , f_e = focal length of eye piece
= 14 x 250 / 21
= 166.67
= 170 ( in two significant figures )
Answer:
___________________________________
<h3>a. Let
us assume a body has initial velocity 'u' and it is subjected to a uniform acceleration 'a' so that the final velocity 'v' after a time interval 't'. Now, By the definition of acceleration, we have:</h3>

It is first equation of motion.
___________________________________
<h3>
b. Let us assume a body moving with an initial velocity 'u'. Let it's final body 'v' after a time interval 't' and the distance travelled by the body becomes 's' then we already have,</h3>

Putting the value of v from the equation (i) in equation (ii), we have,

It is third equation of motion.
________________________________
<h3>
c. Let us assume a body moving with an initial velocity 'u'. Let it's final velocity be 'v' after a time and the distance travelled by the body be 's'. We already have,</h3>


Putting the value of t from (i) in the equation (ii)

It is forth equation of motion.
________________________________
Hope this helps...
Good luck on your assignment..