1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
8

The mass-to charge ratio of the proton is found to be

Chemistry
1 answer:
andrezito [222]3 years ago
7 0

Answer:

47 degrees

Explanation:

You might be interested in
Determine the number of significant figures in each of the following
Otrada [13]

Answer:

A. 3 Significant Figures

B. 6 Significant Figures

C. 2 Significant Figures

D. 4 Significant Figures

E. 4 Significant Figures

F. 5 Significant Figures

Explanation:

5 0
3 years ago
Please give me the reasons of the solution!
irinina [24]

1. The answer is option E, that is None of the above is correct.

As a polymer becomes more crystalline,

its melting point doesn't decreases, its density doesn't decreases, its stiffness doesn't decreases and its yield stress doesn't decreases.

2. The answer is option B, that is the molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.

In the smectic A liquid-crystalline phase, molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.

3.  For a substitutional alloy to form, the two metals combined must have similar atomic radii and chemical bonding properties.

6 0
3 years ago
Answer these please ASAP need help no idea how to do these
STALIN [3.7K]

Answer:

Explanation:

Cu:

Number of moles = Mass / molar masa

2 mol = mass / 64 g/mol

Mass = 128 g

Mg:

Number of moles = Mass / molar masa

0.5 mol = mass / 24 g/mol

Mass =  g

Cl₂:

Number of moles = Mass / molar masa

Number of moles  = 35.5 g / 24 g/mol

Number of moles = 852 mol

H₂:

Number of moles = Mass / molar mass

8 mol  = Mass / 2 g/mol

Mass =  16 g

P₄:

Number of moles = Mass / molar masa

2 mol  =  mass / 124 g/mol

Mass = 248 g

O₃:

Number of moles = Mass / molar masa

Number of moles  = 1.6 g /48  g/mol

Number of moles = 0.033 mol

H₂O

Number of moles = Mass / molar masa

Number of moles  = 54 g / 18 g/mol

Number of moles = 3 mol

CO₂

Number of moles = Mass / molar masa

2 mol  =  mass / 124 g/mol

Mass = 248 g

NH₃

Number of moles = Mass / molar masa

Number of moles  = 8.5 g / 17 g/mol

Number of moles = 0.5 mol

CaCO₃

Number of moles = Mass / molar masa

Number of moles  = 100 g / 100 g/mol

Number of moles = 1 mol

a)

Given data:

Mass of iron(III)oxide needed = ?

Mass of iron produced = 100 g

Solution:

Chemical equation:

F₂O₃ + 3CO    →    2Fe  + 3CO₂

Number of moles of iron:

Number of moles = mass/ molar mass

Number of moles = 100 g/ 56 g/mol

Number of moles = 1.78 mol

Now we compare the moles of iron with iron oxide.

                        Fe          :           F₂O₃                

                           2          :             1

                          1.78       :        1/2×1.78 = 0.89 mol

Mass of  F₂O₃:

Mass = number of moles × molar mass

Mass = 0.89 mol × 159.69 g/mol

Mass = 142.124 g

100 g of iron is 1.78 moles of Fe, so 0.89 moles of F₂O₃ are needed, or 142.124 g of iron(III) oxide.

b)

Given data:

Number of moles of Al = 0.05 mol

Mass of iodine = 26 g

Limiting reactant = ?

Solution:

Chemical equation:

2Al + 3I₂   →  2AlI₃

Number of moles of iodine = 26 g/ 254 g/mol

Number of moles of iodine = 0.1 mol

Now we will compare the moles of Al and I₂ with AlI₃.

                          Al            :         AlI₃    

                          2             :           2

                         0.05         :        0.05

                           I₂            :         AlI₃

                           3            :          2

                         0.1           :           2/3×0.1 = 0.067

Number of moles of AlI₃ produced by Al are less so it will limiting reactant.

Mass of AlI₃:                            

Mass = number of moles × molar mass

Mass = 0.05 mol × 408 g/mol

Mass = 20.4 g

26 g of iodine is 0.1 moles. From the equation, this will react with 2 moles of Al. So the limiting reactant is Al.

c)

Given data:

Mass of lead = 6.21 g

Mass of lead oxide = 6.85 g

Equation of reaction = ?

Solution:

Chemical equation:

2Pb + O₂   → 2PbO

Number of moles of lead = mass / molar mass

Number of moles = 6.21 g/ 207 g/mol

Number of moles = 0.03 mol

Number of moles of lead oxide = mass / molar mass

Number of moles = 6.85 g/ 223 g/mol

Number of moles = 0.031 mol

Now we will compare the moles of oxygen with lead and lead oxide.

               Pb         :        O₂

                2          :         1

               0.03     :      1/2×0.03 = 0.015 mol

Mass of oxygen:

Mass = number of moles × molar mass

Mass = 0.015 mol × 32 g/mol

Mass =  0.48 g

The mass of oxygen that took part in equation was 0.48 g. which is 0.015 moles of oxygen. The number of moles of Pb in 6.21 g of lead is 0.03 moles. So the balance equation is

2Pb + O₂   → 2PbO

   

6 0
3 years ago
Be sure to answer all parts. Hydrogen iodide decomposes according to the reaction 2 HI(g) ⇌ H2(g) + I2(g) A sealed 1.50−L contai
Zarrin [17]

Answer : The concentration of HI and I_2 at equilibrium is, 0.0158 M and 0.00302 M respectively.

Explanation :

First we have to calculate the concentration of H_2, I_2\text{ and }HI

\text{Concentration of }H_2=\frac{\text{Moles of }H_2}{\text{Volume of solution}}=\frac{0.00623mol}{1.50L}=0.00415M

\text{Concentration of }I_2=\frac{\text{Moles of }I_2}{\text{Volume of solution}}=\frac{0.00414mol}{1.50L}=0.00276M

\text{Concentration of }HI=\frac{\text{Moles of }HI}{\text{Volume of solution}}=\frac{0.0244mol}{1.50L}=0.0163M

Now we have to calculate the value of equilibrium constant (K).

The given chemical reaction is:

                            2HI(g)\rightleftharpoons H_2(g)+I_2(g)

Initial conc.      0.0163     0.00415      0.00276

At eqm.        (0.0163-2x) (0.00415+x)  (0.00276+x)

As we are given:

Concentration of H_2 at equilibrium = 0.00467 M

That means,

(0.00415+x) = 0.00467

x = 0.00026 M

Concentration of HI at equilibrium = (0.0163-2x) = (0.0163-2(0.00026)) = 0.0158 M

Concentration of I_2 at equilibrium = (0.00276+x) = (0.00276+0.00026) = 0.00302 M

8 0
3 years ago
What best explains the type of energy present in the vibrating atoms of a substance? It is thermal energy, which is a type of ki
natima [27]

What best explains the type of energy present in the vibrating atoms of a substance?

The answer is: <u>It is thermal energy, which is a type of kinetic energy. </u>

5 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is a compound machine?
    14·2 answers
  • The volume of a pond being studied for the effects of acid rain is 35 kiloliters (kL). There are 1,000 liters (L) in 1 kL and 1
    5·1 answer
  • _____ energy is energy available to do work.
    15·2 answers
  • How are gold medal cells and human cells alike and different
    8·1 answer
  • Difference between giant ionic structure,giant covalent structure and simple molecular structure and also covalent bonds and ion
    13·1 answer
  • Which ion will oxidize Fe? 1) Zn+2 2)Ca+2 3) Mg+2 4) Cu+2
    8·1 answer
  • 1.2 moles of (NH4)3PO3
    10·1 answer
  • Organic compounds undergo a variety of different reactions, including substitution, addition, elimination, and rearrangement. An
    12·1 answer
  • What does one mole of H2O correspond to?
    10·2 answers
  • Select the correct answer from each drop-down menu. consider the substances hydrogen (h2), fluorine (f2), and hydrogen fluoride
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!