Di- is used when you are naming organic compounds. If you have the same substituent repeated twice in the compund
For example: CH3-CH(CH3)-CH2-CH(CH3)-CH3
This will be named 2,4-dimethylpentane
Answer:
1. V₁ = 2.0 mL
2. V₁ = 2.5 mL
Explanation:
<em>You are provided with a stock solution with a concentration of 1.0 × 10⁻⁵ M. You will be using this to make two standard solutions via serial dilution.</em>
To calculate the volume required (V₁) in each dilution we will use the dilution rule.
C₁ . V₁ = C₂ . V₂
where,
C are the concentrations
V are the volumes
1 refers to the initial state
2 refers to the final state
<em>1. Perform calculations to determine the volume of the 1.0 × 10⁻⁵ M stock solution needed to prepare 10.0 mL of a 2.0 × 10⁻⁶ M solution.</em>
C₁ . V₁ = C₂ . V₂
(1.0 × 10⁻⁵ M) . V₁ = (2.0 × 10⁻⁶ M) . 10.0 mL
V₁ = 2.0 mL
<em>2. Perform calculations to determine the volume of the 2.0 × 10⁻⁶ M solution needed to prepare 10.0 mL of a 5.0 × 10⁻⁷ M solution.</em>
C₁ . V₁ = C₂ . V₂
(2.0 × 10⁻⁶ M) . V₁ = (5.0 × 10⁻⁷ M) . 10.0 mL
V₁ = 2.5 mL
According to molecular orbital theory, regions of wave function with highest probability of finding electrons are areas with constructive interference.
An electron is a negatively charged subatomic particle that can exist either free or bound to an atom (not bound). A bound electron is one of the three primary types of particles that make up an atom, along with protons and neutrons. Protons, neutrons, and electrons combined make up the atom's nucleus. A proton's positive charge balances an electron's negative charge. When an atom has an equal number of protons and electrons, it is said to be in a neutral state. Electrons are distinct from other particles in a number of ways. They have a much lower mass, are found outside the nucleus, and exhibit both wave- and particle-like characteristics. The electron is a basic particle.
To know more about electrons visit :brainly.com/question/23966811
#SPJ4
Answer:
A Biome is way bigger than a ecosystem
Explanation:
Answer:
Bohrium (Niels Bohr)
Curium (Marie and Pierre Curie)
Einsteinium (Albert Einstein