Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:
<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:
<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!
Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as =
where G is the gravitational constant
Gravitational force of the planet =
=
=
recall, gravitational force of earth is given as =
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Answer:
Explanation:
To solve this, we start by using one of the equations of motion. The very first one, in fact
1
V = U + at.
V = 0 + 0.8 * 3.4 = 2.72 m/s.
2.
V = 0 + 0.8 * 4.3 = 3.44 m/s.
3.
d = ½ * 0.8 * 4.3² + 3.44 * 12.9
d = 7.396 + 44.376
d = 51.77 m.
4.
d = 62 - 51.77 = 10.23 m. = Distance
traveled during deceleration.
a = (V² - Vo²) / 2d.
a = (0² - 3.44²) / 20.46
a = -11.8336 / 20.46 = -0.58 m/s²
5.
t = (V - Vo)/a =(0 - 3.44) / -0.58
t = -3.44/-.58 = 5.93 s
= Stop time.
T = 4.3 + 12.9 + 5.93 = 23.13 s. = Total
time the hare was moving.
6.
d = Vo * t + ½ * a * t² = 62 m.
0 + 0.5 * (23.13)² * a = 61
267.5a = 61
a = 61/267.5
a = 0.23 m/s²